| Русский Русский | English English |
   
Главная Current Issue
19 | 12 | 2024
10.14489/vkit.2021.10.pp.022-031

DOI: 10.14489/vkit.2021.10.pp.022-031

Дубанов А. А.
ЭПЮР РАДИЩЕВА В МНОГОФАКТОРНОМ АНАЛИЗЕ ЗАДАЧИ ГРУППОВОГО ПРЕСЛЕДОВАНИЯ МНОЖЕСТВА ЦЕЛЕЙ
(c. 22-31)

Аннотация. Рассмотрена кинематическая модель задачи группового преследования множества целей, в частности вариант модели, когда все цели достигаются одновременно. Время достижения цели каждого преследователя есть зависимость от скорости движения и минимального радиуса кривизны траектории. Многофакторный анализ модулей скоростей и минимальных радиусов кривизны траекторий каждого из преследователей для одновременного достижения своих целей основан на методах многомерной начертательной геометрии. Данный метод построения траекторий преследователей для достижения множества целей в заданные значения времени может быть востребован разработчиками автономных беспилотных летательных аппаратов.

Ключевые слова:  многофакторный анализ; эпюр Радищева; цель; преследователь; траектория; радиус кривизны.

 

Dubanov A. А.
RADISHCHEV PLOT IN MULTIVARIATE ANALYSIS OF THE PROBLEM OF MULTIPLE TARGETS GROUP PURSUIT
(pp. 22-31)

Abstract. This article discusses a kinematic model of the problem of group pursuit of a set of goals. The article discusses a variant of the model when all goals are achieved simultaneously. And also the possibility is considered when the achievement of goals occurs at the appointed time. In this model, the direction of the speeds by the pursuer can be arbitrary, in contrast to the method of parallel approach. In the method of parallel approach, the velocity vectors of the pursuer and the target are directed to a point on the Apollonius circle. The proposed pursuit model is based on the fact that the pursuer tries to follow the predicted trajectory of movement. The predicted trajectory of movement is built at each moment of time. This path is a compound curve that respects curvature constraints. A compound curve consists of a circular arc and a straight line segment. The pursuer's velocity vector applied to the point where the pursuer is located touches the given circle. The straight line segment passes through the target point and touches the specified circle. The radius of the circle in the model is taken equal to the minimum radius of curvature of the trajectory. The resulting compound line serves as an analogue of the line of sight in the parallel approach method. The iterative process of calculating the points of the pursuer’s trajectory is that the next point of position is the point of intersection of the circle centered at the current point of the pursuer’s position, with the line of sight corresponding to the point of the next position of the target. The radius of such a circle is equal to the product of the speed of the pursuer and the time interval corresponding to the time step of the iterative process. The time to reach the goal of each pursuer is a dependence on the speed of movement and the minimum radius of curvature of the trajectory. Multivariate analysis of the moduli of velocities and minimum radii of curvature of the trajectories of each of the pursuers for the simultaneous achievement of their goals i based on the methods of multidimensional descriptive geometry. To do this, the projection planes are entered on the Radishchev diagram: the radius of curvature of the trajectory and speed, the radius of curvature of the trajectory and the time to reach the goal. On the first plane, the projection builds a one-parameter set of level lines corresponding to the range of velocities. In the second graph, corresponding to a given range of speeds, functions of the dependence of the time to reach the target on the radius of curvature. The preset time for reaching the target and the preset value of the speed of the pursuer are the optimizing factors. This method of constructing the trajectories of pursuers to achieve a variety of goals at given time values may be in demand by the developers of autonomous unmanned aerial vehicles.

Keywords: Multivariate analysis; Radishchev diagrams; Target; Pursuer; Trajectory; Radius of curvature.

Рус

А. А. Дубанов (Бурятский государственный университет имени Доржи Банзарова, Улан-Удэ, Россия) E-mail: Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript  

Eng

A. А. Dubanov (Buryat State University named after D. Banzarov, Ulan-Ude, Russian) E-mail: Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript  

Рус

1. Волков В. Я., Чижик М. А. Графические оптимизационные модели многофакторных процессов. Омск: Издательско-полиграфический центр ОГИС, 2009. 101 с.
2. Айзекс Р. Дифференциальные игры. М.: Мир, 1967.
3. Понтрягин Л. С. Линейная дифференциальная игра уклонения // Тр. МИАН СССР. 1971. Т. 112. С. 30 – 63.
4. Красовский Н. Н., Субботин А. И. Позиционные дифференциальные игры. М.: Наука, 1974.
5. Петросян Л. А. Дифференциальные игры преследования. Ленинград: Изд-во ЛГУ, 1977. 222 c.
6. Вагин Д. А., Петров Н. Н. Задача по преследованию скоординированных беглецов // Известия РАН. Теория и системы управления. 2001. № 5. С. 75 – 79.
7. Банников А. С. Некоторые нестационарные задачи группового преследования // Тр. Института математики и информатики УдГУ. 2013. Вып. 1(41), С. 3 – 46.
8. Банников А. С. Нестационарная задача группового преследования // Тр. Математического центра Лобачевского. 2006. Вып. 34. Казань: Изд-во Казанского математического общества. С. 26 – 28.
9. Изместьев И. В., Ухоботов В. И. Задача преследования маломаневренных объектов с терминальным множеством в форме кольца // Итоги науки и техники. Сер. Современная математика и ее приложения. Тематические обзоры. 2018. Т. 148. С. 25 – 31.

Eng

1. Volkov V. Ya., Chizhik M. A. (2009). Graphic optimization models of multifactor processes. Omsk: Izdatel'sko-poligraficheskiy tsentr OGIS. [in Russian language]
2. Ayzeks R. (1967). Differential games. Moscow: Mir. [in Russian language]
3. Pontryagin L. S. (1971). Linear differential evasion game. Trudy MIAN SSSR, Vol. 112, pp. 30 – 63. [in Russian language]
4. Krasovskiy N. N., Subbotin A. I. (1974). Positional differential games. Moscow: Nauka. [in Russian language]
5. Petrosyan L. A. (1977). Differential pursuit games. Leningrad: Izdatel'stvo LGU. [in Russian language]
6. Vagin D. A., Petrov N. N. (2001). Pursuit of coordinated fugitives. Izvestiya RAN. Teoriya i sistemy upravleniya, (5), pp. 75 – 79. [in Russian language]
7. Bannikov A. S. (2013). Some nonstationary group pursuit problems. Trudy Instituta matematiki i informatiki UdGU, 41(1), pp. 3 – 46. [in Russian language]
8. Bannikov A. S. (2006). Nonstationary Group Pursuit Problem. Trudy Matematicheskogo tsentra Lobachevskogo, 34, pp. 26 – 28. Kazan': Izdatel'stvo Kazanskogo matematicheskogo obshchestva. [in Russian language]
9. Izmest'ev I. V., Uhobotov V. I. (2018). The problem of pursuit of low-maneuverable objects with aterminal set in the form of a ring. Geometric Methods in Control Theory and Mathematical Physics: Differential Equations, Integrability, Qualitative Theory: Proceedings of the International Conference. Ryazan'. Itogi nauki i tekhniki. Tematicheskiy obzor, 148, pp. 25 – 31. Moscow: VINITI RAN. [in Russian language]

Рус

Статью можно приобрести в электронном виде (PDF формат).

Стоимость статьи 450 руб. (в том числе НДС 18%). После оформления заказа, в течение нескольких дней, на указанный вами e-mail придут счет и квитанция для оплаты в банке.

После поступления денег на счет издательства, вам будет выслан электронный вариант статьи.

Для заказа скопируйте doi статьи:

10.14489/vkit.2021.10.pp.022-031

и заполните  форму 

Отправляя форму вы даете согласие на обработку персональных данных.

.

 

Eng

This article  is available in electronic format (PDF).

The cost of a single article is 450 rubles. (including VAT 18%). After you place an order within a few days, you will receive following documents to your specified e-mail: account on payment and receipt to pay in the bank.

After depositing your payment on our bank account we send you file of the article by e-mail.

To order articles please copy the article doi:

10.14489/vkit.2021.10.pp.022-031

and fill out the  form  

 

.

 

 

 
Search
Rambler's Top100 Яндекс цитирования