| Русский Русский | English English |
   
Главная Текущий номер
01 | 12 | 2020
10.14489/vkit.2020.10.pp.030-037

DOI: 10.14489/vkit.2020.10.pp.030-037

Гусейнзаде Ш. С.
МОДЕЛИРОВАНИЕ ИНТЕЛЛЕКТУАЛЬНЫХ СИСТЕМ УПРАВЛЕНИЯ С ПРИМЕНЕНИЕМ МОДИФИЦИРОВАННЫХ НЕЧЕТКИХ РАСКРАШЕННЫХ СЕТЕЙ ПЕТРИ
(c. 30-37)

Аннотация. Предложена модификация сетей Петри – нечеткая раскрашенная сеть Петри, получаемая путем интеграции нечетких и раскрашенных сетей Петри. В разработанной модифицированной нечеткой раскрашенной сети Петри функции принадлежности термов лингвистической переменной применены к цветовым маркерам раскрашенных сетей Петри, причем дугам присваиваются нечеткие условия существования в зависимости от значений этих функций. Для реализации предложенного способа моделирования использована система CPN (Colored Petri Nets) Tools. Выбор функции принадлежности и фаззификация значений термов выполнены в приложении Fuzzy  Toolbox системы MatLab. Проведены компьютерные имитационные эксперименты на примере реализации нечеткого управления водяными насосами.

Ключевые слова:  нечеткая сеть Петри; раскрашенная сеть Петри; управление водяными насосами; матрица инциденций; симуляция сети; лингвистическая переменная; терм; функция принадлежностей.

 

Huseynzade Sh. S.
MODELING OF INTELLECTUAL CONTROL SYSTEMS WITH APPLICATION OF MODIFIED FUZZY COLORED PETRI NETS
(pp. 30-37)

Abstract. A modification of the Petri nets is proposed  a Fuzzy Colored Petri Net (FCPN), leading to the integration of Fuzzy Petri Nets (FPN) and Colored Petri Nets (CPN). Separately, the shortcomings of FPN and CPN and the advantages the developed FCPN for modeling intelligent control systems are identified and justified. In the developed modified FCPN the membership functions of the terms of a linguistic variable are applied to markers of the CPN as color and fuzzy existence conditions are assigned to arcs depending on the values of the linguistic variable. As a result, FCPN with enhanced capabilities was obtained, which eliminates the shortcomings of CPN and FPN. The FCPN and a simulation approach are defined, which includes a reasoning algorithm, as well as a detailed procedure for modeling and analysis of nonlinear discrete objects. The structure is organized in the CPN Tools  system with the synchronization of the CPN ML (Markup Language) language with the MatLab package. The choice of membership function and fuzzification of term values is performed in the Fuzzy Toolbox application of the MatLab system. The proposed approach is illustrated by simple example, including the control of water pumps, to maintain the required water level in the pumping well. A model is developed for the automation of adaptive fuzzy control of water pumps based on modified FCPN. Based on the criteria for the operation of water pumps according to the water levels in the pumping well, many positions and transitions of the FCPN are formed. Describing the necessary behavior of the system by the relations between the positions and transitions of the FCPN using the logic “If ... Then ...” an adaptation algorithm is developed. Based on the algorithm, the matrices of input and output incidents are determined. The graph model of the FCPN is developed. Visualization of the model is implemented in the CPN Tools system. The computer simulations and net analysis experiments demonstrate the convenience of the developed approach when modeling the intelligent control of dynamic systems.

Keywords: Fuzzy Petri net; Colored Petri net; Water pump control; Incidence matrix; Net simulation; Linguistic variable; Term; Membership function.

Рус

Ш. С. Гусейнзаде (Сумгаитский государственный университет, Сумгаит, Азербайджанская Республика) E-mail: Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript  

Eng

Sh. S. Huseynzade (Sumgayit State University, Sumgayit, Republic of Azerbaijan) E-mail: Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript  

Рус

1. Питерсон Дж. Теория сетей Петри и моделирование систем / пер. с англ. М. В. Горбатовой, В. Л. Торхова, В. Н. Четверикова; под ред. В. А. Горбатова. М.: Мир, 1984. 264 с.
2. Jensen K., Kristensen L. M. Colored Petri Nets: Modeling and Validation of Concurrent Systems. Berlin Heidelberg: Springer-Verlag, 2009. 384 p.
3. Jensen K., Kristensen L. M. Colored Petri Nets: A Graphical Language for Formal Modeling and Validation of Concurrent Systems // Communications of the ACM. 2015. V. 58, No. 6. P. 61 – 70. doi: 10.1145/2663340
4. Борисов В. В., Круглов В. В., Федулов А. С. Нечеткие модели и сети. 2-е изд., стереотип. М.: Горячая линия–Телеком, 2012. 284 с.
5. Zadeh L. A. Fuzzy Sets and Information Granularity // In book: Advances in Fuzzy Set Theory and Applications / M. M. Gupta, R. K. Ragade, R. R. Yager (Eds). Amsterdam: North Holland, 1979. P. 3 – 18.
6. A Knowledge Representation Method for Modeling Rule-Based Systems / J. Yuan et al. // 8th World Congress on Intelligent Control and Automation. 2010. P. 1585 – 1589. doi: 10.1109/ WCICA.2010.5554456
7. Saren S. K., Blaga F., Vesselenyi T. Implementation of Fuzzy System Using Hierarchical Colored Petri Nets to Model Flexible Manufacturing Cell // IOP Conference Series: Materials Science and Engineering. 2018. V. 400, No. 4. 17 p. doi: 10.1088/ 1757-899X/400/4/042050
8. Yang B., Li H. G. A Novel Dynamic Timed Fuzzy Petri Nets Modeling Method with Applications to Industrial Processes // Expert Systems with Applications. 2018, V. 97. P. 276 – 289.
9. Liu F., Chen S. Y. Colored Fuzzy Petri Nets for Dealing with Genetic Regulatory Networks // Fundamenta Informaticae. 2018. V. 160, No. 1-2. P. 101 – 118. doi: 10.3233/FI-2018-1676
10. Zhang X. J. Multi-State System Reliability Analysis Based on Fuzzy Colored Petri Nets // The Computer Journal. 2018. V. 61, No. 1. P. 1 – 13. doi: 10.1093/comjnl/bxw089
11. Freitas J., Julia S., Rezende L. Modeling a Fuzzy Resource Allocation Mechanism based on Workflow Nets // Proc. of the 18th Intern. Conf. on Enterprise Information Systems (ICEIS). 2016. V. 2. P. 559 – 566. doi: 10.5220/0005833505590566
12. Гусейнзаде Ш. С. Основные аспекты разработки интегрированных раскрашенных нечетких сетей Петри // Математические методы в технике и технологиях – ММТТ: сб. тр. XXXII Междунар. науч. конф. 2019. Т. 122. C. 124 – 130.
13. White F. M. Fluid Mechanics. New York: McGraw – Hill, 2011. 885 p.
14. Тэрано Т., Асаи К., Сугэно М. Прикладные нечеткие системы / пер. с япон. Ю. Н. Чернышова. М.: Мир, 1993. 368 с.
15. Каид В. А. А. Методы построения функций принадлежности нечетких множеств // Известия ЮФУ. Техн. науки. 2013. № 2(139). С. 144 – 153.
16. Леоненков А. В. Нечеткое моделирование в среде MATLAB и fuzzyTECH. СПб.: БХВ-Петер-бург, 2005. 736 с.
17. Zaitsev D. A. Switched LAN Simulation by Colored Petri Nets // Mathematics and Computers in Simulation. 2004. V. 66, No. 3. P. 245 – 249. doi: 10.1016/j.matcom.2003.12.004
18. Aalst W. M. P., Stahl C. Modeling Business Processes: A Petri Net-Oriented Approach. The MIT Press, 2011. 400 p.

Eng

1. Piterson Dzh. (1984). Petri net theory and system modeling. Moscow: Mir. [in Russian language]
2. Jensen K., Kristensen L. M. (2009). Colored Petri Nets: Modeling and Validation of Concurrent Systems. Berlin Heidelberg: Springer-Verlag.
3. Jensen K., Kristensen L. M. (2015). Colored Petri Nets: A Graphical Language for Formal Modeling and Validation of Concurrent Systems. Communications of the ACM, Vol. 58, (6), pp. 61 – 70. doi: 10.1145/2663340
4. Borisov V. V., Kruglov V. V., Fedulov A. S. (2012). Fuzzy models and networks. 2nd ed. Moscow: Goryachaya liniya–Telekom. [in Russian language]
5. Gupta M. M., Ragade R. K., Yager R. R. (Eds.), Zadeh L. A. (1979). Fuzzy Sets and Information Granularity. In book: Advances in Fuzzy Set Theory and Applications, pp. 3 – 18. Amsterdam: North Holland.
6. Yuan J. et al. (2010). A Knowledge Representation Method for Modeling Rule-Based Systems. 8th World Congress on Intelligent Control and Automation, pp. 1585 – 1589. doi: 10.1109/ WCICA.2010.5554456
7. Saren S. K., Blaga F., Vesselenyi T. (2018). Implementation of Fuzzy System Using Hierarchical Colored Petri Nets to Model Flexible Manufacturing Cell. IOP Conference Series: Materials Science and Engineering, Vol. 400, (4). doi: 10.1088/ 1757-899X/400/4/042050
8. Yang B., Li H. G. (2018). A Novel Dynamic Timed Fuzzy Petri Nets Modeling Method with Applications to Industrial Processes. Expert Systems with Applications, Vol. 97, pp. 276 – 289.
9. Liu F., Chen S. Y. (2018). Colored Fuzzy Petri Nets for Dealing with Genetic Regulatory Networks. Fundamenta Informaticae, Vol. 160, (1-2), pp. 101 – 118. doi: 10.3233/FI-2018-1676
10. Zhang X. J. (2018). Multi-State System Reliability Analysis Based on Fuzzy Colored Petri Nets. The Computer Journal, Vol. 61, (1), pp. 1 – 13. doi: 10.1093/comjnl/bxw089
11. Freitas J., Julia S., Rezende L. (2016). Modeling a Fuzzy Resource Allocation Mechanism based on Workflow Nets. Proceedings of the 18th International Conference on Enterprise Information Systems (ICEIS), Vol. 2, pp. 559 – 566. doi: 10.5220/0005833505590566
12. Guseynzade Sh. S. (2019). The main aspects of the development of integrated colored fuzzy Petri nets. Mathematical methods in engineering and technology - MMTT: collection of proceedings of the XXXII International scientific conference, Vol. 122, pp. 124 – 130. [in Russian language]
13. White F. M. (2011). Fluid Mechanics. New York: McGraw – Hill.
14. Terano T., Asai K., Sugeno M. (1993). Applied fuzzy systems. Moscow: Mir. [in Russian language]
15. Kaid V. A. A. (2013). Methods for constructing membership functions of fuzzy sets. Izvestiya YuFU. Tekhnicheskie nauki, 139(2), pp. 144 – 153. [in Russian language]
16. Leonenkov A. V. (2005). Fuzzy modeling in MATLAB and fuzzyTECH. Saint Petersburg: BHV-Peterburg. [in Russian language]
17. Zaitsev D. A. (2004). Switched LAN Simulation by Colored Petri Nets. Mathematics and Computers in Simulation, Vol. 66, (3), pp. 245 – 249. doi: 10.1016/j.matcom.2003.12.004
18. Aalst W. M. P., Stahl C. (2011). Modeling Business Processes: A Petri Net-Oriented Approach. The MIT Press.

Рус

Статью можно приобрести в электронном виде (PDF формат).

Стоимость статьи 350 руб. (в том числе НДС 18%). После оформления заказа, в течение нескольких дней, на указанный вами e-mail придут счет и квитанция для оплаты в банке.

После поступления денег на счет издательства, вам будет выслан электронный вариант статьи.

Для заказа скопируйте doi статьи:

10.14489/vkit.2020.10.pp.030-037

и заполните  форму 

Отправляя форму вы даете согласие на обработку персональных данных.

.

 

Eng

This article  is available in electronic format (PDF).

The cost of a single article is 350 rubles. (including VAT 18%). After you place an order within a few days, you will receive following documents to your specified e-mail: account on payment and receipt to pay in the bank.

After depositing your payment on our bank account we send you file of the article by e-mail.

To order articles please copy the article doi:

10.14489/vkit.2020.10.pp.030-037

and fill out the  form  

 

.

 

 

 
Поиск
Журнал КОНТРОЛЬ. ДИАГНОСТИКА
Баннер
Баннер
Баннер
Баннер
Rambler's Top100 Яндекс цитирования