| Русский Русский | English English |
   
Главная Текущий номер
21 | 11 | 2019
10.14489/vkit.2019.09.pp.033-042

DOI: 10.14489/vkit.2019.09.pp.033-042

Остроумов О. А., Синюк А. Д.
ПРОПУСКНАЯ СПОСОБНОСТЬ ШИРОКОВЕЩАТЕЛЬНОГО КАНАЛА СВЯЗИ
(с. 33-42)

Аннотация. Посредством доказательства фундаментальных теорем кодирования получена точная оценка общей информации, передаваемой по широковещательному каналу связи (ШВК). На основе введенной неопределенности доказана обратная теорема кодирования. Определен порядок использования неравенства Файнстейна для доказательства прямой теоремы кодирования. Совокупный результат теорем кодирования доказывает, что информационная емкость и пропускная способность совпадают. Оценка пропускной способности ШВК представлена графически. Полученные результаты расширяют известные исследования эффективности различных моделей ШВК и могут быть использованы проектировщиками для оценки потенциальных возможностей синтезируемых систем связи, включающих ШВК.

Ключевые слова:  широковещательный канал связи; информационная эффективность ШВК; неопределенность ШВК; обратная теорема кодирования; неравенство Файнстейна; прямая теорема кодирования; точная оценка пропускной способности ШВК.

 

Ostroumov O. A., Sinyuk A. D.
BROADCAST CHANNEL TRANSMISSION CAPACITY
(pp. 33-42)

Abstract. The most important studies of well-known Broadcast Communication Channels (BCC) models are associated with obtaining accurate information efficiency  estimates(IE). Earlier, the coding problem was stated, the joint information measure (JI) of the proposed BCC model was introduced and investigated. Then the information capacity (IC) was introduced and the conditions for maximizing the average JI were defined, the uncertainty concept was defined, and an evidence-based adjustment of the Feinstein inequality for the channel model under study was made. In the present paper, the general information accurate estimate transmitted via the BCC by proving the fundamental coding theorems is obtained. On the basis of the previously obtained results, the inverse coding theorem for BCC was proved, which determines the condition for the code error average probability striving to one, which consists in choosing a code with a speed exceeding IE BCC. The Feinstein inequality role on the basis of which the direct coding theorem roof is carried out is determined. The theorem states that there are codes with a low error probability, provided that the code rate does not exceed the channel's IE. The coding theorems cumulative result proves that the IE and the throughput (BC) coincide. An accurate estimate of BC BCC is obtained. The results obtained do not contradict and extend the well-known IE studies of various BCC models and can be used by designers to assess the synthesized communication systems potential capabilities, including BCC channels. The purpose of further research is the gain estimate through IE channel transmission in comparison with the successive transmission through the component channels, which will outline the conditions for the preferred use of the BCC.

Keywords: Broadcast communication channel; Broadcast channel informational efficiency; Broadcast channel uncertainty; Inverse coding theorem; Feinstein inequality; Direct coding theorem; Broadcast channel throughput capacity accurate estimate.

Рус

О. А. Остроумов, А. Д. Синюк (Военная академия связи им. Маршала Советского Союза С. М. Буденного, Санкт-Петербург, Россия) E-mail: Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript  

Eng

O. A. Ostroumov, A. D. Sinyuk (S. M. Budenny Military Academy of Communication, Saint-Petersburg, Russia) E-mail: Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript  

Рус

1. Yuanpeng Liu, Elza Erkip. Capacity and Rate Regions of a Class of Broadcast Interference Channels // IEEE Transactions on Information Theory. 2016. V. 62, Is. 10. P. 5556 – 5572.
2. H. Kim, Gamal A. El. Capacity Theorems for Broadcast Channels With Two Channel State Compo-nents Known at the Receivers // IEEE Transactions on Information Theory. 2016. V. 62, Is. 12. P. 6917 – 6930.
3. Yang Gao, Ertem Tuncel. Wyner-Ziv Coding Over Broadcast Channels: Hybrid Digital/Analog Schemes // IEEE Transactions on Information Theory (TIT). 2011. V. 57, Is. 9. P. 5660 – 5672.
4. Behzad Asadi, Lawrence Ong, Sarah J. Johnson. On Index Coding in Noisy Broadcast Channels with Receiver Message Side Information // IEEE Communications Letters. 2014. V. 18, Is. 4. P. 640 – 643.
5. Синюк А. Д., Остроумов О. А. Постановка задачи кодирования общей информации широковещательного канала // Вестник компьютерных и ин-формационных технологий. 2017. № 1. С. 16 – 20. doi: 10.14489/vkit.2017.01.pp.016-020.
6. Синюк А. Д., Остроумов О. А. Теоретико-информационная модель передачи общей информации широковещательного канала // Вестник компьютерных и информационных технологий. 2017. № 11. С. 29 – 36. doi: 10.14489/vkit.2017.11.pp.029-036.
7. Синюк А. Д., Остроумов О. А. Информационная емкость и неопределенность дискретного широковещательного канала связи // Вестник компьютерных и информационных технологий. 2018. № 8. С. 36  45. doi: 10.14489/vkit.2018.08.pp.036-045.
8. Nair Ch., Gamal A. El. The Capacity Region of a Class of 3-Receiver Broadcast Channels with Degraded Message Sets // IEEE Transactions on Information Theory. 2009. V. 55, Is. 10. P. 4479 – 4493. doi: 10.1109/ISIT.2008.4595279.
9. Lior Dikstein, Haim H. Permuter, Yossef Steinberg. On State-Dependent Degraded Broadcast Channels With Cooperation // IEEE Transactions on Information Theory. 2016. V. 62, Is. 5. P. 2308 – 2323.
10. HonFah Chong, Ying-Chang Liang. On the Capacity Region of the Parallel Degraded Broadcast Channel With Three Receivers and Three-Degraded Message Sets // IEEE Transactions on Information Theory. 2018. V. 64, Is. 7. P. 5017 – 5041.
11. Ahmed S. Mansour, Rafael F. Schaefer, Holger Boche. On the Individual Secrecy Capacity Regions of the General, Degraded, and Gaussian Multi-Receiver Wiretap Broadcast Channel // IEEE Transactions on Information Forensics and Security. 2016. V. 11, Is. 9. P. 2107 – 2122.
12. Liang Y., Kramer G. Rate Regions for Relay Broadcast Channels // IEEE Transactions on Information Theory. 2007. V. 53, Is. 10. P. 3517 – 3535.
13. Bin Dai, Linman Yu, Zheng Ma. Relay Broadcast Channel With Confidential Messages // IEEE Transactions on Information Forensics and Security. 2016. V. 11, Is. 2. P. 410 – 425.
14. Yu W., Cioffi J. M. Sum Capacity of Gaussian Vector Broadcast Channels // IEEE Transactions on Information Theory. 2004. V. 50, Is. 9. P. 1875 – 1892.
15. Gohary R. H., Davidson T. N. The Capacity Region of a Product of Two Unmatched Physically Degraded Gaussian Broadcast Channels with Three Individual Messages and a Common Message // IEEE Transactions on Information Theory. 2013. V. 59, Is. 1. P. 76 – 103.
16. Hon-Fah Chong, Ying-Chang Liang. The Capacity Region of the Class of Three-Receiver Gaussian MIMO Multilevel Broadcast Channels With Two-Degraded Message Sets // IEEE Transactions on Information Theory. 2014. V. 60, Is. 1. P. 42 – 53.
17. Ziad Ahmad, Zachary Chance, David J. Love, Chih-Chun Wang. Concatenated Coding Using Linear Schemes for Gaussian Broadcast Channels With Noisy Channel Output Feedback // IEEE Transactions on Communications. 2015. V. 63, Is. 11. P. 4576 – 4590.
18. Балдин К. В., Башлыков В. Н., Рукосуев А. В. Теория вероятностей и математическая статистика: учеб. М.: Дашков и Ко, 2010. 473 c.
19. Буре В. М., Парилина Е. М. Теория вероят-ностей и математическая статистика: учебник для вузов СПб.: Лань, 2013. 416 c.
20. Белов В. М., Новиков С. Н., Солонская О. И. Теория информации. Курс лекций: учеб. посо-бие для вузов. М.: Горячая линия – Телеком, 2012. 143 c.
21. Биккенин Р. Р., Чесноков М. Н. Теория электрической связи. М.: Издательский центр «Ака-демия», 2010. 336 с.
22. Санников В. Г. Теория информации и кодирования: учеб. пособие. М.: МТУСИ, 2015. 96 с.
23. Bernard Sklar. Digital Communications: Fundamentals and Applications. Los Angeles: University of California, 2007. 1104 p.
24. Колесник В. Д., Полтырев Г. Ш. Курс теории информации. М.: Наука, 1982. 416 с.
25. Гусак А. А., Бричикова Е. А. Основы высшей математики. Минск: ТетраСистемс, 2012. 208 с.

Eng

1. Yuanpeng Liu, Elza Erkip. (2016). Capacity and Rate Regions of a Class of Broadcast Interference Channels. IEEE Transactions on Information Theory, 62(10), pp. 5556–5572.
2. H. Kim, Gamal A. El. (2016). Capacity Theorems for Broadcast Channels With Two Channel State Components Known at the Receivers. IEEE Transactions on Information Theory, 62(12), pp. 6917–6930.
3. Yang Gao, Ertem Tuncel. (2011). Wyner-Ziv Coding Over Broadcast Channels: Hybrid Digital/Analog Schemes. IEEE Transactions on Information Theory (TIT), 57(9), pp. 5660–5672.
4. Behzad Asadi, Lawrence Ong, Sarah J. Johnson. (2014). On Index Coding in Noisy Broadcast Channels with Receiver Message Side Information. IEEE Communications Letters, 18(4), pp. 640–643.
5. Sinyuk A. D, Ostroumov O. A. (2017). Broad-cast Communication Channel general information coding problem statement. Vestnik komp'yuternyh i informatsionnyh tekhnologiy, (1), pp. 16-20. [in Russian language] doi: 10.14489 / vkit.2017.01.pp.016–020.
6. Sinyuk A. D., Ostroumov O. A. (2017). The Information-Theoretical transmission model of broadcast channel general information. Vestnik komp'yuternyh i informatsionnyh tekhnologiy, (11), pp. 29-36. [in Russian language] doi: 10.14489 / vkit.2017.11.pp.029–036.
7. Sinyuk A. D., Ostroumov O. A. (2018). Informational capacity and discrete broadcast communication channel uncertainty. Vestnik komp'yuternyh i informatsionnyh tekhnologiy, (11), pp. 36-45. [in Russian language] doi: 10.14489 / vkit.2018.08.pp.036–045.
8. Nair Ch., Gamal A. El. (2009). The Capacity Region of a Class of 3-Receiver Broadcast Channels with Degraded Message Sets. IEEE Transactions on Information Theory, 55(10), pp. 4479–4493. doi: 10.1109/ISIT.2008.4595279.
9. Lior Dikstein, Haim H. Permuter, Yossef Steinberg. (2016). On State-Dependent Degraded Broadcast Channels With Cooperation. IEEE Transactions on Information Theory, 62(5), pp. 2308-2323.
10. HonFah Chong, Ying-Chang Liang. (2018). On the Capacity Region of the Parallel Degraded Broadcast Channel With Three Receivers and Three-Degraded Message Sets. IEEE Transactions on Information Theory, 64(7), pp. 5017-5041.
11. Ahmed S. Mansour, Rafael F. Schaefer, Holger Boche. (2016). On the Individual Secrecy Capacity Regions of the General, Degraded, and Gaussian Multi-Receiver Wiretap Broadcast Channel. IEEE Transactions on Information Forensics and Security, 11(9), pp. 2107-2122.
12. Liang Y., Kramer G. (2007). Rate Regions for Relay Broadcast Channels. IEEE Transactions on Information Theory, 53(10), pp. 3517-3535.
13. Bin Dai, Linman Yu, Zheng Ma. (2016). Relay Broadcast Channel With Confidential Messages. IEEE Transactions on Information Forensics and Security, 11(2), pp. 410–425.
14. Yu W., Cioffi J. M. (2004). Sum Capacity of Gaussian Vector Broadcast Channels. IEEE Transac-tions on Information Theory, 50(9), pp. 1875–1892.
15. Gohary R. H., Davidson T. N. (2013). The Capacity Region of a Product of Two Unmatched Physically Degraded Gaussian Broadcast Channels with Three Individual Messages and a Common Message. IEEE Transactions on Information Theory, 59(1), pp. 76–103.
16. Hon-Fah Chong, Ying-Chang Liang. (2014). The Capacity Region of the Class of Three-Receiver Gaussian MIMO Multilevel Broadcast Channels With Two-Degraded Message Sets. IEEE Transactions on Information Theory, 60(1), pp. 42–53.
17. Ziad Ahmad, Zachary Chance, David J. Love, Chih-Chun Wang. (2015). Concatenated Coding Using Linear Schemes for Gaussian Broadcast Channels With Noisy Channel Output Feedback. IEEE Transactions on Communications, 63(11), pp. 4576–4590.
18. Baldin K.V., Bashlykov V.N., Rukosuev A. V. (2010). Probability theory and mathematical statistics: textbook. Moscow: Dashkov and K. [in Russian language]
19. Bure V. M., Parilina E. M. (2013). Probability theory and mathematical statistics: textbook. Saint Petersburg: Lan'. [in Russian language]
20. Belov V. M., Novikov S. N., Solonskaya O. I. (2012). Information theory. Course of lectures: textbook for universities. Moscow: Hotline – Telecom. [in Russian language]
21. Bikkenin R. R., Chesnokov M. N. (2010). Electrical communication theory. Moscow: Iz-datel'skiy tsentr «Akademiya». [in Russian language]
22. Sannikov V. G. (2015). Information Theory and Coding: Schoolbook. Moscow: MTUSI. [in Russian language]
23. Bernard Sklar. (2007). Digital Communications: Fundamentals and Applications. Los Angeles: University of California.
24. Kolesnik V. D., Poltyrev G. Sh. (1982). Infor-mation theory course. Moscow: Nauka. [in Russian language]
25. Gusak A. A., Brichikova E. A. (2012). The Higher Mathematics foundations. Minsk: TetraSis-tems. [in Russian language]

Рус

Статью можно приобрести в электронном виде (PDF формат).

Стоимость статьи 350 руб. (в том числе НДС 18%). После оформления заказа, в течение нескольких дней, на указанный вами e-mail придут счет и квитанция для оплаты в банке.

После поступления денег на счет издательства, вам будет выслан электронный вариант статьи.

Для заказа скопируйте doi статьи:

10.14489/vkit.2019.09.pp.033-042

и заполните  форму 

Отправляя форму вы даете согласие на обработку персональных данных.

.

 

Eng

This article  is available in electronic format (PDF).

The cost of a single article is 350 rubles. (including VAT 18%). After you place an order within a few days, you will receive following documents to your specified e-mail: account on payment and receipt to pay in the bank.

After depositing your payment on our bank account we send you file of the article by e-mail.

To order articles please copy the article doi:

10.14489/vkit.2019.09.pp.033-042

and fill out the  form  

 

.

 

 

 
Поиск
Баннер
Журнал КОНТРОЛЬ. ДИАГНОСТИКА
Баннер
Баннер
Баннер
Rambler's Top100 Яндекс цитирования