| Русский Русский | English English |
   
Главная Архив номеров
19 | 01 | 2025
10.14489/vkit.2016.07.pp.009-014

DOI: 10.14489/vkit.2016.07.pp.009-014

Вяткин С. И.
МОДЕЛИРОВАНИЕ НЕОДНОРОДНОСТЕЙ ПРИ ВИЗУАЛИЗАЦИИ АТМОСФЕРНЫХ ЭФФЕКТОВ
(c. 9-14)

Аннотация. Предложен метод задания трехмерных облаков, ограниченных поверхностями свободных форм, и механизм быстрого отображения внутренней неоднородной структуры объекта с применением функции затухания. Реализован метод генерации реалистичных трехмерных облаков с использованием текстуры для вычисления функции цвета и плотности.

Ключевые слова:  функции возмущения; свободные формы; трехмерные облака; полупрозрачность; текстура; функции цвета и плотности.

 

Vyatkin S. I.
MODELING OF NOT UNIFORMITY AT VISUALIZATION OF ATMOSPHERIC EFFECTS
(pp. 9-14)

Abstract. A method for specifying three-dimensional (3D) clouds bounded by freeform surfaces is proposed. Scanning a 2D space, one cannot obtain a true 3D image. The polygonal 3D graphics with scanning the polygons in the image plane is not a true three-dimensional graphics. Information presented to the user by this technology is not complete. There is no main information on the object depth: we mean not the absence of the Z coordinate of the surface point but the absence of information on the ray passing through the object. Methods for visualizing internal structures of objects are known as volume visualization in computer graphics. The volume-oriented visualization technology radically differs from the conventional restoring polygonal graphics. Polygonal objects are specified by surfaces described by polygons imposed on a wire frame of a model. This object description is sufficient for game applications, animated and synthetic objects but insufficient for rendering the internal structure of natural objects or effects. For example, flight simulators should render volume clouds.The aim of this paper is visualization of objects formed by freeform surfaces and filled with internal structure, with quick calculation of integral value of transparence on the given segment. For visualization we used the recursive algorithm for object space scanning with regard to perspective. A method for inhomogeneity simulation while visualizing the atmospheric effects with the use of a texture for calculating the functions of color and density was realized. In this case, the color on the object surface is taken from a texture map, and the transparency function is proportionally calculated from this color. A method for fast rendering the internal inhomogeneous object structure via the attenuation function, in so doing, it is easy to calculate the integral value of transparency for segments along the Z coordinate is proposed.

Keywords: Perturbation functions; Free forms; 3D clouds; Translucency; Texture; Functions of color and density.

Рус

С. И. Вяткин (Институт автоматики и электрометрии Сибирского отделения РАН, Новосибирск, Россия) E-mail:  Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript  

Eng

S. I. Vyatkin (Institute of Automation and Electrometry Siberian Branch of the RAS, Novosibirsk, Russia) E-mail: Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript

Рус

1. Вяткин С. И. Моделирование сложных поверхностей с применением функций возмущения // Автометрия. 2007. Т. 43, № 3. C. 40 – 47.
2. Вяткин С. И. Метод бинарного поиска элементов изображения функционально заданных объектов с применением графических акселераторов // Автометрия. 2014. Т. 50, № 6. С. 89 – 96.
3. Gardner G. Y. Simulation of Natural Scenes Using Textured Quadric Surfaces // Computer Graphics. 1984. № 18. P. 11 – 20.
4. Gardner G. Y. Visual Simulations of Clouds // Computer Graphics. 1985. № 19. P. 297 – 303.
5. Schachter B. J. Computer Image Generation. NY: John Wiley & Sons, 1980. 236 p.
6. Reeves W. T. Particle Systems – a Technique for Modeling a Class of Fuzzy Objects // ACM Transactions on Graphics. 1983. V. 2, № 2. Р. 91 – 108.
7. Miller G., Pearce A. Globular Dynamics: A Connected Particle System for Animating Viscous Fluids // Computers and Graphics. 1989. V. 13, № 3. Р. 305 – 309.
8. Szeliski R. Tonnesen D. Surfase Modeling with Oriented Particle Systems // Proc. of Siggraph’92. 26 – 31 July 1992. Chicago, USA. 1992. Р. 185 – 194.
9. Surface Elements as Rendering Primitives / H. Pfister et al. // Proc. Siggraph’2000. July 2000. New Orleans, LS, USA. 2000. P. 335 – 342.
10. Tobor I., Schlik C., Grisoni L. Rendering by Surfels // Proc. of Graphicon’2000. 28 Аugust – 2 Sept. 2000. Moscow, Russia. 2000. P. 91 – 98.
11. Fedkiw R., Stam J., Jensen H. W. Visual Simulation of Smoke // Proc. Siggraph’01. 12 – 17 August 2001. Los Angeles, California, USA. 2001. P. 15 – 22.
12. Simulation of Cloud Dynamics on Graphics Hardware / M. J. Harris et al. // Eurographics’03 Conf. on Graph. Hardware. 26–27 July 2003. San Diego, California, USA. 2003. P. 92 – 101.
13. Efficient Method for Realistic Animation of Clouds / Y. Dobashi et al. // Proc. Siggraph’00. New Orleans, LS, USA, July 2000. P. 19 – 28.
14. Knitte G. Voxel Engine for Real-time Visualization and Examination // Eurographics’93. 6 – 10 Sept. 1993. Barcelona, Spain. 1993. V. 12, № 3. P. 37 – 48.
15. Max N., Craw R., Becker B. Application of Texture Mapping to Volume and Flow Visualization // 5th Intern Conf. and Exhibition on Computer Graphics and Visualization, Graphicon’95. 3 – 7 July 1995. St. Petersburg, Russia, 1995. Р. 108 – 113.

Eng

1. Vyatkin S. I. (2007). Complex surface modeling using perturbation functions. Avtometriia, 43(3), pp. 40-47. [in Russian language]
2. Vyatkin S. I. (2014). Method of binary search for image elements of functionally defined objects using graphics processing units. Avtometriia, 50(6), pp. 89-96. [in Russian language]
3. Gardner G. Y. (1984). Simulation of natural scenes using textured quadric surfaces. Computer Graphics, (18), pp. 11-20.
4. Gardner G. Y. (1985). Visual simulations of clouds. Computer Graphics, (19), pp. 297-303.
5. Schachter B. J. (1980). Computer image generation. NY: John Wiley & Sons.
6. Reeves W. T. (1983). Particle systems – a technique for modeling a class of fuzzy objects. ACM Transactions on Graphics, 2(2), pp. 91-108.
7. Miller G., Pearce A. (1989). Globular dynamics: a connected particle system for animating viscous fluids. Computers and Graphics, 13(3), pp. 305-309.
8. Szeliski R. Tonnesen D. (1992). Surface modeling with oriented particle systems. Proc. of Siggraph’92. 26 – 31 July 1992. Chicago, USA, pp. 185-194.
9. Pfister H. et al. (2000). Surface elements as rendering primitives. In Computer Graphics Proceedings (Siggraph’2000). July 2000. New Orleans, LS, USA, pp. 335-342.
10. Tobor I., Schlik C., Grisoni L. (2000). Rendering by surfels. Proc. of Graphicon’2000. 28 Аugust – 2 Sept. 2000. Moscow, Russia, pp. 91-98.
11. Fedkiw R., Stam J., Jensen H. W. (2001). Visual simulation of smoke. In Comput. Graphics (SIGGRAPH’01 Proc.). 12-17 August 2001. Los Angeles, California, USA, pp. 15-22.
12. Harris M. J. et al. (2003). Simulation of cloud dynamics on graphics hardware. Proc. SIGGRAPH Eurographics’03 Conf. on Graph. Hardware. 26-27 July 2003. San Diego, California, USA, pp. 92-101.
13. Dobashi Y. et al. (2000). Efficient method for realistic animation of clouds. Comput. Graphics (SIGGRAPH ’00 Proc.), New Orleans, LS, USA, July 2000, pp. 19-28.
14. Knitte G. (1993). Voxel engine for real-time visualization and examination. Eurographics’93. 6-10 Sept. 1993. Barcelona, Spain, 12(3), pp. 37-48.
15. Max N., Craw R., Becker B. (1995). Application of texture mapping to volume and flow visualization. 5th Intern Conf. and Exhibition on Computer Graphics and Visualization, Graphicon’95. 3 – 7 July 1995. St. Petersburg, Russia, pp. 108-113.

Рус

Статью можно приобрести в электронном виде (PDF формат).

Стоимость статьи 350 руб. (в том числе НДС 18%). После оформления заказа, в течение нескольких дней, на указанный вами e-mail придут счет и квитанция для оплаты в банке.

После поступления денег на счет издательства, вам будет выслан электронный вариант статьи.

Для заказа статьи заполните форму:

{jform=1,doi=10.14489/vkit.2016.07.pp.009-014}

.

Eng

This article  is available in electronic format (PDF).

The cost of a single article is 350 rubles. (including VAT 18%). After you place an order within a few days, you will receive following documents to your specified e-mail: account on payment and receipt to pay in the bank.

After depositing your payment on our bank account we send you file of the article by e-mail.

To order articles please fill out the form below:

{jform=2,doi=10.14489/vkit.2016.07.pp.009-014}

 

 

 

 

 

.

.

 

 

 
Поиск
Rambler's Top100 Яндекс цитирования