| Русский Русский | English English |
   
Главная Архив номеров
21 | 11 | 2019
10.14489/vkit.2016.03.pp.044-049

DOI: 10.14489/vkit.2016.03.pp.044-049

Попов Е. Ю., Фоменков С. А.
АУТЕНТИФИКАЦИЯ ПОЛЬЗОВАТЕЛЯ НА ОСНОВЕ ПАТТЕРНОВ СИГНАЛОВ ГОЛОВНОГО МОЗГА ПРИ РАЗЛИЧНЫХ ВИДАХ МЕНТАЛЬНОЙ АКТИВНОСТИ
(c. 44-49)

Аннотация. Даны описания актуальности и преимуществ разработки метода аутентификации на основе паттернов сигналов головного мозга пользователя. Проведены исследования возможности применения паттернов сигналов головного мозга, полученных при выполнении различных ментальных задач, для решения задачи аутентификации. Разработаны метод и алгоритм, использующие паттерны сигналов головного мозга, позволяющие решить задачу аутентификации на основе данных одноканального электроэнцефалографического сигнала.

Ключевые слова:  аутентификация; электроэнцефалография; нейрокомпьютерный интерфейс; косинусное сходство.

 

Popov E. Yu., Fomenkov S. A.
USER AUTHENTICATION BASED ON BRAIN SIGNAL PATTERNS FOR DIFFERENT MENTAL ACTIVITIES
(pp. 44-49)

Abstract. This paper describes authentication method based on brain signals patterns. The study covered several types of mental tasks for authentication problem: breathing, finger movement imagination, sport activity imagination, singing imagination, background music, counting color objects, thought-password, large numbers multiplication. Single channel brain-computer interface NeuroSky MindWave Mobile was used in the study. This interface has one non-invasive electrode, which was located on the left frontal lobes of the brain. Seven persons participated in collecting experimental data. Using NeuroSky MindWave Mobile were collected 560 examples of brain signals including a-, b-, g-, d- and q-waves. Only signals of a- and b-waves were used further in the study, because these waves dominate in the electroencephalogram when performing mental tasks. Several authentication protocols based on cosine similarity of brain signals for different mental tasks were proposed and evaluated in this paper. Base authentication protocol uses one threshold for brain signals for all users. Improved authentication protocol uses personal threshold for brain signals for every user. Final authentication protocol uses personal threshold for brain signals and personal mental task for every user. False acceptance rate, false rejection rate and half total error rate measures were used to evaluate quality of developed authentication protocols. The results suggest that final authentication protocol can be used in practice.

Keywords: Authentication; Electroencephalography; Brain-computer interface; Cosine similarity.

Рус


Е. Ю. Попов, С. А. Фоменков (Волгоградский государственный технический университет) E-mail: Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript

Eng

 E. Yu. Popov, S. A. Fomenkov (Volgograd State Technical University) E-mail: Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript

Рус

1. Nijholt A., Bos D. P.-O., Reuderink B. Turning Short-comings into Challenges: Brain-Computer Interfaces for Games // Entertainment Computing. 2009. V. 1, № 2. P. 85 – 94. doi: 10.1016/j.entcom.2009.09.007.
2. Brain-Computer Interfaces for Communication and Control / J. R. Wolpaw et al. // Clinical Neurophysiology. 2002. V. 113, № 6. P. 767 – 791.
3. Jasper H. H. The Ten-Twenty Electrode System of the International Federation // Electroencephalogr Clin Neurophysiol. 1958. V. 10. P. 371 – 375.
4. Thorpe J., van Oorschot P. С., Somayaji A. Pass-Thoughts: Authenticating with Our Minds // Proc. of the New Security Paradigms Workshop (NSPW). 2005. P. 45 – 56.
5. Marcel S., Millan J. Person Authentication Using Brainwaves (EEG) and Maximum a Posteriori Model Adaptation // IEEE Transactions on Pattern Analysis and Machine Intelligence. 2007. V. 29, № 4. P. 743 – 752.
6. Palaniappan R. Two-Stage Biometric Authentication Method Using thought Activity Brain Waves // Intern. Journal of Neural Systems. 2008. V. 18, № 1. P. 59 – 66.
7. Person Identication from the EEG Using Nonlinear Signal Classification / M. Poulos et al. // Methods of Information in Medicine. 2002. V. 41, № 1. P. 64 – 75.
8. Low-Cost Electroencephalogram (EEG) Based Authentication / С. Ashby et al. // Proc. of 5th International IEEE/EMBS Conference on Neural Engineering (NER). 2011. P. 442 – 445.
9. Noninvasive Neural Prostheses Using Mobile and Wireless EEG / B. C.-T. Lin et al. // Proc. of the IEEE. 2008. V. 96, № 7. P. 1167 – 1183.
10. Маннинг К. Д., Рагхаван П., Шютце Х. Введение в информационный поиск: пер. с англ. М.: Вильямс, 2011. 528 с.

Eng

1. Nijholt A., Bos D. P.-O., Reuderink B. (2009). Turning shortcomings into challenges: brain-computer interfaces for games. Entertainment Computing, 1(2), pp. 85-94. doi: 10.1016/j.entcom.2009.09.007.
2. Wolpaw J. R. et al. (2002). Brain-computer interfaces for communication and control. Clinical Neurophysiology, 113(6), pp. 767-791. doi: 10.1016/S1388-2457(02)00057-3
3. Jasper H. H. (1958). The tentwenty electrode system of the International Federation. Electroencephalogr Clin Neurophysiol, 10, pp. 371-375.
4. Thorpe J., van Oorschot P. С., Somayaji A. (2005). Passthoughts: authenticating with our minds. Proc. of the New Security Paradigms Workshop (NSPW), pp. 45-56.
5. Marcel S., Millan J. (2007). Person authentication using brainwaves (EEG) and maximum a posteriori model adaptation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 29(4), pp. 743-752. doi: 10.1109/TPAMI.2007.1012
6. Palaniappan R. (2008). Two-stage biometric authentication method using thought activity brain waves. Intern. Journal of Neural Systems, 18(1), pp. 59-66. doi: 10.1142/s0129065708001373
7. Poulos M. et al. (2002). Person identification from the EEG using nonlinear signal classification. Methods of Information in Medicine, 41(1), pp. 64-75.
8. Ashby С. et al. (2011). Lowcost electroencephalogram (EEG) based authentication. Proc. of 5th International IEEE/EMBS Conference on Neural Engineering (NER), pp. 442-445.
9. B. C.-T. Lin et al. (2008). Noninvasive neural prostheses using mobile and wireless EEG. Proc. of the IEEE, 96(7), pp. 1167-1183.
10. Manning K. D., Ragkhavan P., Shiuttse Kh. (2011). Introduction to information search. Moscow: Williams.

Рус

Статью можно приобрести в электронном виде (PDF формат).

Стоимость статьи 350 руб. (в том числе НДС 18%). После оформления заказа, в течение нескольких дней, на указанный вами e-mail придут счет и квитанция для оплаты в банке.

После поступления денег на счет издательства, вам будет выслан электронный вариант статьи.

Для заказа статьи заполните форму:

{jform=1,doi=10.14489/vkit.2016.03.pp.044-049}

.

Eng

This article  is available in electronic format (PDF).

The cost of a single article is 350 rubles. (including VAT 18%). After you place an order within a few days, you will receive following documents to your specified e-mail: account on payment and receipt to pay in the bank.

After depositing your payment on our bank account we send you file of the article by e-mail.

To order articles please fill out the form below:

{jform=2,doi=10.14489/vkit.2016.03.pp.044-049}

 

 

 

 

 

.

.

 

 

 
Поиск
Баннер
Баннер
Баннер
Баннер
Журнал КОНТРОЛЬ. ДИАГНОСТИКА
Rambler's Top100 Яндекс цитирования