| Русский Русский | English English |
   
Главная Архив номеров
19 | 12 | 2024
10.14489/vkit.2023.02.pp.026-036

DOI: 10.14489/vkit.2023.02.pp.026-036

Еременко В. Т., Логинов И. В., Фисун А. П., Рытов М. Ю.
УПРАВЛЕНИЕ ПЕРЕСТРОЕНИЕМ ИНФОРМАЦИОННО-ВЫЧИСЛИТЕЛЬНЫХ ПЛАТФОРМ ЭВОЛЮЦИОНИРУЮЩИХ КИБЕРФИЗИЧЕСКИХ СИСТЕМ В УСЛОВИЯХ НЕОПРЕДЕЛЕННОСТИ
(c. 26-36)

Аннотация. Описана проблема управления перестроением информационно-вычислительных платформ эволюционирующих киберфизических систем. Ее актуальность обусловлена значительными изменениями условий применения киберфизических систем (управления дорожным движением, логистическими потоками, распределенным производством), приводящих к изменению требований назначения. Важным фактором управления структурно-функциональным составом информационно-вычислительных модулей является высокая степень неопределенности показателей применения модулей на ранних стадиях цикла принятия решения. Рассмотрен подход к управлению перестроением информационно-вычислительных платформ на основе механизма максимума функциональной пригодности набора информационно-вычислительных модулей. В результате анализа эффективности набора способов управления перестроением при вариации ошибки оценивания параметров модернизируемых информационно-вычислительных модулей получена контекстно-зависимая модель управления Max как комбинация подходов на основе статических и динамических приоритетов.

Ключевые слова:  киберфизическая система; моделирование; реконфигурация; управление; требование.

 

Eremenko V. T., Loginov I. V., Fisun A. P., Rytov M. Yu.
MANAGING THE RESTRUCTURING OF INFORMATION AND COMPUTING PLATFORMS OF EVOLVING CYBERPHYSICAL SYSTEMS UNDER CONDITIONS OF UNCERTAINTY
(pp. 26-36)

Abstract. The paper considers the problem of managing the computational platform reconfiguration of evolving cyber-physical systems. The urgency of the task is determined by a significant changing increasing of the cyber-physical systems’ using conditions (traffic management, logistics flows, distributed production), leading to a change in the requirements of the destination. The intensive of change for innovation cyber-physical can be more than 0.5-1.0 by year, that require significant resource for reconfiguration and modernization. A significant factor in managing the structural and functional composition of informational computing modules is a high degree of uncertainty in the indicators of the such modules using at the early stages of the decision-making cycle. Within the framework of the study, an approach to managing the reconfiguration of informational computing platforms based on the mechanism of maximum functional suitability of a set of informational computing modules is considered. The effectiveness of Shortest Job the Next (SJN), Dynamic Priorities (DPR) and Static Priorities (SPR) planning mechanism are evaluated in the case of uncertainty (the error coefficient of variation varies in the range from 0 to 1.75). In the case of zero error – DPR mechanism is more effective than SPR, that is more effective than SJN. Based on the analysis of the effectiveness of a set of methods for managing reconfiguration with variations in the error of estimating the parameters of the upgraded information and computing modules, a context-dependent MAX management model is obtained in the article. MAX management model is a combination of approaches based on static and dynamic priorities: if the value of the coefficient of variation more 0.75 than MAX = SPR else DPR. The use of such a management model makes it possible to increase the integral efficiency of the target cyber-physical system.

Keywords: Cyberphysical system; Modeling; Reconfiguration; Management; Requirement.

Рус

В. Т. Еременко, И. В. Логинов (Орловский государственный университет имени И. С. Тургенева, г. Орёл, Россия) E-mail: Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript
А. П. Фисун (Управление по Орловской области филиала ФГУП «ГРЧЦ» в Центральном федеральном округе, г. Орёл, Россия)
М. Ю. Рытов (Брянский государственный технический университет, Брянск, Россия)

 

Eng

V. T. Eremenko, I. V. Loginov (Oryol State University named after I. S. Turgenev, Oryol, Russia) E-mail: Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript
A. P. Fisun (Department for the Oryol region of the branch of FSUE “GRC” in the Central Federal District, Oryol, Russia)
M. Yu. Rytov (Bryansk State Technical University, Bryansk, Russia)

 

Рус

1. Jehn-Ruey J. An Improved Cyberphysical Systems Architecture for Industry 4.0 Smart Factories // International Conference on Applied System Innovation (ICASI). 2017. Sapporo, Japan. P. 918-920. https://doi.org/10.1109/ICASI.2017.7988589.
2. The Decision Making Method for Reconfiguration of Adaptive Infocommunication Systems / I. V. Loginov, V. T. Eremenko, S. V. Eremenko et al. // Advances in Dynamical Systems and Applications. 2021. V. 16, No. 1. P. 335 – 353.
3. Jayatilleke Sh., Lai R. A Systematic Review of Requirements Change Management // Information and Software Technology. 2018. V. 93. P. 163 – 185.
4. Гришаков В. Г., Логинов И. В. Управление динамической реконфигурацией ИТ-инфраструктуры в меняющихся условиях // Информационные системы и технологии. 2016. № 3(95). С. 13 – 22.
5. Cyber-Physical Systems Architectures for Industrial Internet of Things Applications in Industry 4.0: A Literature Review / D. Pivoto, L. Fernandes, R. Righi et al. // Journal of Manufacturing Systems. 2020. V. 58, Part A. P. 176 – 192. URL: https://doi.org/10.1016/ j.jmsy.2020.11.017 (дата обращения: 21.01.2023).
6. “Industrie 4.0” and Smart Manufacturing: A Review of Research Issues and Application Examples / K-D. Thoben, S. Wiesner, Th. Wuest et al. // International Journal of Automation Technology. 2017. V. 11, Is. 1. P. 4 – 19. URL: https://doi.org/10.20965/ ijat.2017.p0004 (дата обращения: 21.01.2023).
7. Верба В. А. Выбор сценариев устойчивого развития сложных систем // Вызовы глобального мира. Вестник ИМТП. 2014. № 1. С. 27 – 32.
8. Павлов А. Н. Методологические основы решения проблемы планирования структурно-функциональной реконфигурации сложных объектов // Изв. вузов. Приборостроение. 2012. Т. 55, № 11. С. 7 – 12.
9. Соколов Б. В., Цивирко Е. Г., Юсупов Р. М. Анализ влияния информатики и информационных технологий на развитие теории и систем управления сложными объектами // Тр. СПИИ РАН. 2009. № 11. С. 10 – 51.
10. Bolnokin V. E., Mutin D. I., Tuan Ngo Anh, Povalyaev A. D. Models of Adaptive Control System Design for Nonlinear Dynamic Plants Based on a Neural Network // Automation and Remote Control. 2015. V. 76, Is. 3. P. 493 – 499.
11. Self-Adaptation Techniques in Cyber-Physical Systems (CPSs) / S. Zeadally, T. Sanislav, G. Mois et al. // IEEE Access. 2019. V. 7. P. 171126 – 171139. URL: https://doi.org/10.1109/ACCESS.2019.2956124.
12. A Comprehensive Technological Survey on the Dependable Self-Management CPS: From Self-Adaptive Architecture to Self-Management Strategies / P. Zhou, D. Zuo, K-M. Hou et al. // Sensors. 2019. V. 19, No. 1033. P. 1 – 58. URL: https://doi.org/10.3390/s19051033 (дата обращения: 21.01.2023).
13. Patterns for Self-Adaptation in Cyber-Physical Systems / S. Biffl, D. Liider, D. Gerhard et al. Multi-Disciplinary Engineering for Cyber-Physical Production Systems. Cham: Springer, 2017. URL: https://doi.org/ 10.1007/978-3-319-56345-9_13 (дата обращения: 21.01.2023).
14. The Vision of Self-Evolving Computing Systems / D. Weyns, Th. Bäck, R. Vidal, et al. // Journal of Integrated Design and Process Science. 2022. V. prepress. P. 1 – 17. URL: https://doi.org/10.3233/JID-220003 (дата обращения: 21.01.2023).
15. Bäck Th., Centrum I., Schwefel H-P. Evolutionary Computation: An Overview // Proceedings of IEEE International Conference on Evolutionary Computation. 1996. Nagoya, Japan. P. 20 – 29. URL: https://doi.org/10.1109/ICEC.1996.542329 (дата обращения: 21.01.2023).
16. Tessier R., Pocek K., Dehon A. Reconfigurable Computing Architectures // Proceedings of the IEEE. V. 103, Is. 3. P. 332 – 354. URL: https://doi.org/10.1109/ JPROC.2014.2386883 (дата обращения: 21.01.2023).
17. A Run-time Reconfiguration Method for an FPGA-Based Electrical Capacitance Tomography System / D. Wanta, W. Smolik, J. Kryszyn et al. // Electronics. 2022. V. 11 (4), Is. 545. P. 1 – 20. URL: https://doi.org/10.3390/electronics11040545 (дата обращения: 30.01.2023).
18. Dubacharla G., Nidamanuri R. A Real-Time SC2S-Based Open-Set Recognition in Remote Sensing Imagery // Journal of Real-Time Image Processing. 2022. V. 19. P. 867 – 880. URL: https://doi.org/10.1007/ s11554-022-01226-y (дата обращения: 21.01.2023).
19. Dynamical Self-Reconfigurable Mechanism for Data-Driven Cell Array / R. Shan, L. Jiang, H. Wu, et al. // Journal of Shanghai Jiaotong University (Science). 2021. V. 26. P. 511 – 521. URL: https://doi.org/10.1007/ s12204-021-2319-z (дата обращения: 30.01.2023).
20. Damschen M., Bauer L., Henkel J. WCET Guarantees for Opportunistic Runtime Reconfiguration // IEEE/ACM International Conference on Computer-Aided Design (ICCAD). 2019. 4 – 7 November. Westminster, CO, USA. P. 1 – 6. URL: https://doi.org/10.1109/ ICCAD45719.2019.8942065 (дата обращения: 21.01.2023).
21. Engell S. Cyber-Physical Systems of Systems – Definition and Core Research and Development Areas // Working Paper of the Support Action CPSoS. 2014. URL: http://www.cpsos.eu/wp-content/uploads/2014/05/ CPSoS-Press-Release_Project-Launch.pdf.
22. Core Research and Innovation Areas in Cyber-Physical Systems of Systems / S. Engell, R. Paulen, M. A. Reniers et al. In: Mousavi, M., Berger, C. (eds) Cyber Physical Systems. Design, Modeling, and Evaluation. CyPhy 2015. Lecture Notes in Computer Science. V. 9361. Springer, Cham. URL: https:// doi.org/10.1007/978-3-319-25141-7_4.
23. Loginov I. V. The Problem of the Functional Development Control of Multifunctional Information Systems under Uncertainty // Modern Informatization Problems in the Technological and Telecommunication Systems Analysis and Synthesis (MIP-2022AS) // Proceedings of the XXVII International Open Science Conference. 1 – 12 Jan. 2022. Yelm, WA, USA: Science Book Publishing Hous LLS, 2022.
24. ГОСТ Р ИСО. МЭК 20000-1–2013. Информационная технология. Управление услугами. Часть 1. Требование к системе управления услугами. М.: Стандартинформ, 2014. 28 с.

Eng

1. Jehn-Ruey J. (2018). An Improved Cyber-Physical Systems Architecture for Industry 4.0 Smart Factories. Advances in Mechanical Ehgineering, Vol. 10, (6). DOI: 10.1177/1687814018784192
2. Loginov I. V., Eremenko V. T., Eremenko S. V. et al. (2021). The Decision Making Method for Reconfiguration of Adaptive Infocommunication Systems. Advances in Dynamical Systems and Applications, Vol. 16, (1), pp. 335 – 353.
3. Jayatilleke Sh., Lai R. (2018). A Systematic Review of Requirements Change Management. Information and Software Technology, Vol. 93, pp. 163 – 185.
4. Grishakov V. G., Loginov I. V. (2016). Managing dynamic reconfiguration of IT infrastructure in a changing environment. Informatsionnye sistemy i tekhnologii, 95(3), pp. 13 – 22. [in Russian language]
5. Pivoto D., Fernandes L., Righi R. et al. (2020). Cyber-Physical Systems Architectures for Industrial Internet of Things Applications in Industry 4.0: A Literature Review. Journal of Manufacturing Systems, Vol. 58, Part A, pp. 176 – 192. Available at: https://doi.org/10.1016/j.jmsy.2020.11.017 (Accessed: 21.01.2023).
6. Thoben K-D., Wiesner S., Wuest Th. et al. (2017). “Industrie 4.0” and Smart Manufacturing: A Review of Research Issues and Application Examples. International Journal of Automation Technology, Vol. 11, (1), pp. 4 – 19. Available: https://doi.org/10.20965/ ijat.2017.p0004 (Accessed: 21.01.2023).
7. Verba V. A. (2014). Selection of scenarios for the sustainable development of complex systems. Vyzovy global'nogo mira. Vestnik IMTP, (1), pp. 27 – 32. [in Russian language]
8. Pavlov A. N. (2012). Methodological foundations for solving the problem of planning the structural and functional reconfiguration of complex objects. Izvestiya vuzov. Priborostroenie, Vol. 55, (11), pp. 7 – 12. [in Russian language]
9. Sokolov B. V., Tsivirko E. G., Yusupov R. M. (2009). Analysis of the Influence of Informatics and Information Technology on the Development of Theory and Systems of Control of Complex Objects. Trudy SPIIRAN, (11), pp. 10 – 51. [in Russian language]
10. Bolnokin V. E., Mutin D. I., Tuan Ngo Anh, Povalyaev A. D. (2015). Models of Adaptive Control System Design for Nonlinear Dynamic Plants Based on a Neural Network. Automation and Remote Control, Vol. 76, (3), pp. 493 – 499.
11. Zeadally S., Sanislav T., Mois G. et al. (2019). Self-Adaptation Techniques in Cyber-Physical Systems (CPSs). IEEE Access, Vol. 7, pp. 171126 – 171139. Available at: https://doi.org/10.1109/ACCESS.2019.2956124
12. Zhou P., Zuo D., Hou K-M. et al. (2019). A Comprehensive Technological Survey on the Dependable Self-Management CPS: From Self-Adaptive Architecture to Self-Management Strategies. Sensors, Vol. 19, 1033, pp. 1 – 58. Available at: https://doi.org/10.3390/s19051033 (Accessed: 21.01.2023).
13. Biffl S., Liider D., Gerhard D. et al. (2017). Patterns for Self-Adaptation in Cyber-Physical Systems. Multi-Disciplinary Engineering for Cyber-Physical Production Systems. Cham: Springer. Available at: https://doi.org/ 10.1007/978-3-319-56345-9_13 (Accessed: 21.01.2023).
14. Weyns D., Bäck Th., Vidal R. et al. (2022). The Vision of Self-Evolving Computing Systems. Journal of Integrated Design and Process Science, Vol. prepress, pp. 1 – 17. Available at: https://doi.org/10.3233/JID-220003 (Accessed: 21.01.2023).
15. Bäck Th., Centrum I., Schwefel H-P. (1996). Evolutionary Computation: An Overview. Proceedings of IEEE International Conference on Evolutionary Computation, pp. 20 – 29. Nagoya. Available at: https://doi.org/10.1109/ICEC.1996.542329 (Accessed: 21.01.2023).
16. Tessier R., Pocek K., Dehon A. Reconfigurable Computing Architectures. Proceedings of the IEEE, Vol. 103, (3), pp. 332 – 354. Available at: https://doi.org/10.1109/JPROC.2014.2386883 (Accessed: 21.01.2023).
17. Wanta D., Smolik W., Kryszyn J. et al. (2022). A Runtime Reconfiguration Method for an FPGA-Based Electrical Capacitance Tomography System. Electronics, Vol. 11, 545, pp. 1 – 20. Available at: https://doi.org/10.3390/electronics11040545 (Accessed: 30.01.2023).
18. Dubacharla G., Nidamanuri R. (2022). A Real-Time SC2S-Based Open-Set Recognition in Remote Sensing Imagery. Journal of Real-Time Image Processing, Vol. 19, pp. 867 – 880. Available at: https://doi.org/10.1007/ s11554-022-01226-y (Accessed: 21.01.2023).
19. Shan R., Jiang L., Wu H. et al. (2021). Dynamical Self-Reconfigurable Mechanism for Data-Driven Cell Array. Journal of Shanghai Jiaotong University (Science), Vol. 26, pp. 511 – 521. Available at: https://doi.org/10.1007/ s12204-021-2319-z (Accessed: 30.01.2023).
20. Damschen M., Bauer L., Henkel J. (2019). WCET Guarantees for Opportunistic Runtime Reconfiguration. IEEE/ACM International Conference on Computer-Aided Design (ICCAD), pp. 1 – 6. Westminster. Available at: https://doi.org/10.1109/ICCAD45719.2019.8942065 (Accessed: 21.01.2023).
21. Engell S. (2014). Cyber-Physical Systems of Systems – Definition and Core Research and Development Areas. Working Paper of the Support Action CPSoS. Available at: http://www.cpsos.eu/wp-content/uploads/2014/05/CPSoS-Press-Release_Project-Launch. pdf
22. Mousavi, M., Berger, C. (Eds.), Engell S., Paulen R., Reniers M. A. et al. (2015). Core Research and Innovation Areas in Cyber-Physical Systems of Systems. Cyber Physical Systems. Design, Modeling, and Evaluation. CyPhy 2015. Lecture Notes in Computer Science, Vol. 9361. Cham: Springer. Available at: https:// doi.org/10.1007/978-3-319-25141-7_4
23. Loginov I. V. (2022). The Problem of the Functional Development Control of Multifunctional Information Systems under Uncertainty. Modern Informatization Problems in the Technological and Telecommunication Systems Analysis and Synthesis (MIP-2022SсТ). Proceedings of the XXVII International Open Science Conference. Yelm: Science Book Publishing Hous LLS.
24. Information technology. Service management. Part 1. Requirement for a service management system. (2014). National Standard No. GOST R ISO. MEK 20000-1–2013. Russian Federation. Moscow: Standartinform. [in Russian language]

Рус

Статью можно приобрести в электронном виде (PDF формат).

Стоимость статьи 500 руб. (в том числе НДС 20%). После оформления заказа, в течение нескольких дней, на указанный вами e-mail придут счет и квитанция для оплаты в банке.

После поступления денег на счет издательства, вам будет выслан электронный вариант статьи.

Для заказа скопируйте doi статьи:

10.14489/vkit.2023.02.pp.026-036

и заполните  форму 

Отправляя форму вы даете согласие на обработку персональных данных.

.

 

Eng

This article  is available in electronic format (PDF).

The cost of a single article is 500 rubles. (including VAT 20%). After you place an order within a few days, you will receive following documents to your specified e-mail: account on payment and receipt to pay in the bank.

After depositing your payment on our bank account we send you file of the article by e-mail.

To order articles please copy the article doi:

10.14489/vkit.2023.02.pp.026-036

and fill out the  form  

 

.

 

 

 
Поиск
Rambler's Top100 Яндекс цитирования