10.14489/vkit.2022.02.pp.003-007 |
DOI: 10.14489/vkit.2022.02.pp.003-007 Бухалев В. А., Скрынников А. А., Болдинов В. А. Аннотация. Рассмотрена линейная стохастическая система с входным возмущением в виде белого шума, модулированного случайным двоичным сигналом. Дисперсия белого шума – помехи в канале измерения – неизвестна. Разработан рекуррентный байесовский алгоритм определения математического ожидания и дисперсии выходного сигнала, основанный на теории систем со случайной скачкообразной структурой. Ключевые слова: случайная скачкообразная структура; неизвестные дисперсии возмущения; байесовский рекуррентный алгоритм.
Bukhalev V. A., Skrynnikov A. A., Boldinov V. A. Abstract. A linear stochastic dynamic system under the influence of random disturbances and interference is considered. The perturbation is a sequence of uncorrelated random variables with a distribution in the range [–1, 1]. This sequence is modeled by a random binary signal with values 1 and 0 and is described by a Markov chain with known probabilities of transitions from one state to another. The modulated signal is fed to the input of the linear control unit. The output signal of the control object is measured with an error, which is a sequence of uncorrelated random variables with an unknown distribution in the range [–1, 1].The problem under consideration differs from the optimal linear filtration problems based on the application of the Kalman filter and its modifications. Its novelty consists in the following: 1) the input signal is a random jumping process – uncorrelated noise modulated by a random binary signal; 2) the variances of random processes – the input signal and the interference characterizing their power are unknown. А posteriori mathematical expectation and the a posteriori variance of the filtering error are determined by the methods of Bayesian estimation and the theory of systems with a random jump structure. The optimal estimation algorithm is described by a system of recurrent equations. It consists of five interconnected blocks: 1) a meter of mathematical expectation and dispersion of an additive mixture of an output signal with interference; 2) an indicator of a random structure; 3) a classifier of a random structure; 4) a dispersiometer; 5) a filter. Keywords: Stochastic jump structure systems; Unknown dispersions of disturbances; Bayesian recurrent algorithm.
РусВ. А. Бухалев (ЗАО «Московский научно-исследовательский телевизионный институт», Москва, Россия)
EngV. A. Bukhalev (Closed Joint-Stock Company “Moscow Scientific Research Television Institute”, Moscow, Russia);
Рус1. Kalman R. E., Busy R. S. New Results in Linear Filtering and Prediction Theory // Trans. ASME, J. Basic Engineering. 1961. V. 83D, March, pp. 95 – 108. Eng1. Kalman R. E., Busy R. S. (1961). New Results in Linear Filtering and Prediction Theory. Transactions of the American Society of Mechanical Engineers, Journal of Basic Engineering, Vol. 83D, pp. 95 – 108.
РусСтатью можно приобрести в электронном виде (PDF формат). Стоимость статьи 500 руб. (в том числе НДС 18%). После оформления заказа, в течение нескольких дней, на указанный вами e-mail придут счет и квитанция для оплаты в банке. После поступления денег на счет издательства, вам будет выслан электронный вариант статьи. Для заказа скопируйте doi статьи: 10.14489/vkit.2022.02.pp.003-007 Отправляя форму вы даете согласие на обработку персональных данных. .
EngThis article is available in electronic format (PDF). The cost of a single article is 450 rubles. (including VAT 18%). After you place an order within a few days, you will receive following documents to your specified e-mail: account on payment and receipt to pay in the bank. After depositing your payment on our bank account we send you file of the article by e-mail. To order articles please copy the article doi: 10.14489/vkit.2022.02.pp.003-007 and fill out the
.
|