| Русский Русский | English English |
   
Главная Archive
19 | 11 | 2024
10.14489/vkit.2017.05.pp.028-034

DOI: 10.14489/vkit.2017.05.pp.028-034

Белим С. В., Черепанов П. Г.
ВСТРАИВАНИЕ ЦИФРОВЫХ ВОДЯНЫХ ЗНАКОВ В ВИДЕОПОТОК НА ОСНОВЕ ТРЕХМЕРНОГО ДИСКРЕТНОГО КОСИНУСНОГО ПРЕОБРАЗОВАНИЯ
(c. 28-34)

Аннотация. Предложен алгоритм встраивания цифровых водяных знаков в видеопоток с использованием трехмерного дискретного косинусного преобразования. Для встраивания применен трехмерный метод, основанный на двухмерном методе Коха и Жао. Использовано изображение цифрового водяного знака и его цифровая голограмма в качестве встраиваемой информации. Проведен компьютерный эксперимент. Показано, что предложенный метод встраивания цифровых водяных знаков показывает высокую устойчивость к случайным импульсным помехам и атаке потери кадров.

Ключевые слова:  цифровые водяные знаки; дискретное косинусное преобразование; цифровая голограмма; цифровое видео; стеганография.

 

Belim S. V., Cherepanov P. G.
3D-DISCRETE COSINE TRANSFORMATION-BASED INTEGRATION OF DIGITAL WATERMARKS INTO VIDEO CONTAINERS
(pp. 28-34)

Abstract. In comparison to images, integration of digital watermarks into video streams bears additional difficulties. One of the reasons of said difficulties is an approach when a video stream is considered as a set of objects, not as a whole. This work approaches integration of digital watermarks basing on considering a video stream as a whole 3D-object. It offers an algorithm of integrating digital watermarks into video streams using the 3D-DCT (Discrete Cosine Transformation). Since most existing video compression algorithms use either DCT or wavelet transformations, the algorithm provides additional resistance to video compression attacks. Integration uses a 3D-method that is based on the Koch-Zhao 2D-algorithm. Integration was made into a single-color channel and uses the midrange component area. Integrated data – monochrome image of a digital watermark. In terms of this method, it was suggested to replace a digital watermark with its digital hologram. Since any hologram fragment contains information about the whole object, it increases the algorithm resistance to stream modification. To evaluate the algorithm reliability, correlation factor was used. Watermark obscurity degree evaluation is based on the peak signal-to-noise ratio value between the initial and the encoded video streams. A computer experiment showed that the offered algorithm of integrating digital watermarks provides high resistance both to accidental impulse noises and to frame loss attacks, without decreasing obscurity degree.

Keywords: Digital watermarks; Discrete cosine transformation; Digital hologram; Digital video; Steganography.

Рус

С. В. Белим, П. Г. Черепанов (Омский государственный университет им. Ф. М. Достоевского, Омск, Россия) E-mail: Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript  

Eng

S. V. Belim, P. G. Cherepanov (Dostoevskiy Omsk State University, Omsk, Russia) E-mail: Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript

 

Рус

1. Lin E. T., Delp E. J. Temporal Synchronization in Video Watermarking // IEEE Transactions on Signal Processing. 2004. V. 52, № 10. P. 3007 – 3022. doi: 10.1109/TSP.2004.833866
2. Delannay D., Macq B. Classification of Watermarking Schemes Robust Against Loss of Synchronization // Proc. of SPIE 5306, Security, Steganography and Watermarking of Multimedia Contents VI. 2004. P. 581 – 591.
3. Chen C., Ni J., Huang J. Temporal Statistic Based Video Watermarking Scheme Robust Against Geometric Attacks and Frame Dropping // Digital Watermarking. Heidelberg: Springer, 2009. V. 5703. P. 81 – 95.
4. Sun S. W., Chang P. C. Video Watermarking Synchronization Based on Profile Statistics // Proc. of IEEE 37th Annual 2003 Intern. Carnahan Conf. on Security Technology. 2003. P. 410 – 413.
5. Митекин В. А., Федосеев В. А. Метод встраивания информации в видео, стойкий к ошибкам потери синхронизации // Компьютерная оптика. 2014. Т. 38, № 3. С. 564 – 573.
6. Sujatha C. N., Satyanarayana P. High Capacity Video Watermarking based on DWT-DCT-SVD // Intern. Journal of Science, Engineering and Technology Research (IJSETR). 2015. V. 4, № 2. P. 245 – 249.
7. Essaouabi A., Regragui F., Ibnelhaj E. A Wavelet-Based Digital Watermarking for Video // Intern. Journal of Computer Science and Information Security (IJCSIS). 2009. V. 6, № 1. P. 29 – 33.
8. Roese J., Pratt W., Robinson G. Interframe Cosine Transform Image Coding // IEEE Transaction on Communication. 1977. V. 25, № 11. P. 1329 – 1339.
9. Božinović N., Konrad J. Motion Analysis in 3D DCT Domain and its Application to Video Coding // Signal Processing: Image Communication. 2005. V. 20, № 6. P. 510 – 528.
10. A Novel Approach on Enhance Steganography Using 3D Image / R. M. Saurabh et al. // Intern. Journal of Advances in Applied Science and Engineering (IJAEAS). 2014. V. 1, № 4. P. 142 – 146.
11. A Robust DWT-Based Video Watermarking Algorithm / H. Liu et al. // IEEE Intern. Symposium on Circuits and Systems. 2002. V. 3. P. 631 – 634.
12. Robust Video Watermarking via Optimization Algorithm for Quantization of Pseudo-Random Semi-Global Statistics / M. Kucukgoz et al. // Security, Steganography, and Watermarking of Multimedia Contents. 2005. P. 363 – 369.
13. Digital Video Watermarking Using 3D-DCT and Intra-Cubic Correlation / J. H. Lim et al. // Proc. SPIE, Security and Watermarking of Multimedia Contents III. 2001. V. 4314. P. 64 – 72.
14. Campisi P., Neri A. 3D-DCT Video Watermarking Using Quantization-Based Methods // 15th European Signal Processing Conference (EUSIPCO 2007). Poznan, Poland, 3 – 7 September, 2007. Р. 2544 – 2548.
15. Koch E., Zhao J. Towards Robust and Hidden Image Copyright Labeling // IEEE Workshop on Nonlinear Signal and Image Processing. 1995. P. 452 – 455.
16. Смирнов М. В. Голографический подход к встраиванию голографических водяных знаков в фотоизображение // Оптический журнал. 2005. Т. 72, № 6. C. 51 – 56.

Eng

1. Lin E. T., Delp E. J. (2004). Temporal synchronization in video watermarking. IEEE Transactions on Signal Processing, 52(10), pp. 3007-3022. doi: 10.1109/TSP.2004. 833866
2. Delannay D., Macq B. (2004). Classification of watermarking schemes robust against loss of synchronization. Proc. of SPIE 5306, Security, Steganography and Watermarking of Multimedia Contents VI, (pp. 581-591). doi: 10.1117/12.526881
3. Chen C., Ni J., Huang J. (2009). Temporal statistic based video watermarking scheme robust against geometric attacks and frame dropping. Digital Watermarking, 5703, pp. 81-95. Heidelberg: Springer. doi: 10.1007/978-3-642-03688-0_10
4. Sun S. W., Chang P. C. (2003). Video watermarking synchronization based on profile statistics. Proc. of IEEE 37th Annual 2003 Intern. Carnahan Conf. on Security Technology. (pp. 410-413).
5. Mitekin V. A., Fedoseev V. A. (2014). The method of embedding information in video, robust against errors of synchronization loss. Komp'iuternaia optika, 38(3), pp. 564- 573. [in Russian language]
6. Sujatha C. N., Satyanarayana P. (2015). High capacity video watermarking based on DWT-DCT-SVD. Intern. Journal of Science, Engineering and Technology Research (IJSETR), 4(2), pp. 245-249.
7. Essaouabi A., Regragui F., Ibnelhaj E. (2009). A wavelet-based digital watermarking for video. Intern. Journal of Computer Science and Information Security (IJCSIS), 6(1), pp. 29-33.
8. Roese J., Pratt W., Robinson G. (1977). Interframe cosine transform image coding. IEEE Transaction on Communication, 25(11), pp. 1329-1339. doi: 10.1109/TCOM.1977.1093761
9. Božinović N., Konrad J. (2005). Motion analysis in 3D DCT domain and its application to video coding. Signal Processing: Image Communication, 20(6), pp. 510-528. doi: 10.1016/j.image.2005.03.007
10. Saurabh R. M. et al. (2014). A novel approach on enhance steganography using 3D image. Intern. Journal of Advances in Applied Science and Engineering (IJAEAS), 1(4), pp. 142-146.
11. Liu H. et al. (2002). A robust DWT-based video watermarking algorithm. IEEE Intern. Symposium on Circuits and Systems, Vol. 3, (pp. 631-634).
12. Kucukgoz M. et al. (2005). Robust video watermarking via optimization algorithm for quantization of pseudo-random semiglobal statistics. Security, Steganography, and Watermarking of Multimedia Contents, pp. 363-369. doi: 10.1117/12.587055
13. Lim J. H. et al. (2001). Digital video watermarking using 3D-DCT and intracubic correlation. Proc. SPIE, Security and Watermarking of Multimedia Contents III, 4314, pp. 64-72. doi: 10.1117/12.435455
14. Campisi P., Neri A. (2007). 3D-DCT video watermarking using quantization-based methods. 15th European Signal Processing Conference (EUSIPCO 2007). Poznan, Poland, 3 – 7 September, 2007, pp. 2544-2548.
15. Koch E., Zhao J. (1995). Towards robust and hidden image copyright labeling. IEEE Workshop on Nonlinear Signal and Image Processing, pp. 452-455.
16. Smirnov M. V. (2005). Holographic approach to embedding holographic watermarks in a photo image. Opticheskii zhurnal, 72(6), pp. 51-56. [in Russian language]

Рус

Статью можно приобрести в электронном виде (PDF формат).

Стоимость статьи 350 руб. (в том числе НДС 18%). После оформления заказа, в течение нескольких дней, на указанный вами e-mail придут счет и квитанция для оплаты в банке.

После поступления денег на счет издательства, вам будет выслан электронный вариант статьи.

Для заказа скопируйте doi статьи:

10.14489/vkit.2017.05.pp.028-034

и заполните  ФОРМУ 

Отправляя форму вы даете согласие на обработку персональных данных.

.

Eng

This article  is available in electronic format (PDF).

The cost of a single article is 350 rubles. (including VAT 18%). After you place an order within a few days, you will receive following documents to your specified e-mail: account on payment and receipt to pay in the bank.

After depositing your payment on our bank account we send you file of the article by e-mail.

To order articles please copy the article doi:

10.14489/vkit.2017.05.pp.028-034

and fill out the  FORM  

.

 

 

 
Search
Rambler's Top100 Яндекс цитирования