| Русский Русский | English English |
   
Главная Archive
22 | 12 | 2024
10.14489/vkit.2016.08.pp.029-033

DOI: 10.14489/vkit.2016.08.pp.029-033

Щербаков М. В., Садовникова Н. П., Парыгин Д. С., Голубев А. В., Чечеткин И. А.
АВТОМАТИЗАЦИЯ ПОДДЕРЖКИ ПРИНЯТИЯ РЕШЕНИЙ ПО РАЗРАБОТКЕ МАРШРУТОВ ОБЩЕСТВЕННОГО ТРАНСПОРТА НА ОСНОВЕ АНАЛИЗА ДАННЫХ О КОРРЕСПОНДЕНЦИЯХ ЖИТЕЛЕЙ
(c. 29-33)

Аннотация. Рассмотрена задача модернизации маршрутной сети городского пассажирского транспорта. Предложен метод, позволяющий на основе данных о предпочтениях жителей по перемещению формировать и оптимизировать новую маршрутную сеть. Разработаны алгоритмы для кластеризации геораспределенных данных, синтеза вариантов сети маршрутов и поиска оптимального варианта. Тестирование разработанных алгоритмов проведено на модельных данных (12 000 точек) для города с населением около 300 000 человек.

Ключевые слова:  городской пассажирский транспорт; планирование транспортной сети; поддержка принятия решений; анализ больших данных; предпочтения жителей; транспортные корреспонденции; геоинформационная система.

Shcherbakov M. V., Sadovnikova N. P., Parygin D. S., Golubev A. V., Chechetkin I. A.
DECISION SUPPORT AUTOMATION FOR THE PUBLIC TRANSPORT ROUTES DEVELOPMENT BASED ON THE CORRESPONDENCES POPULATION DATA ANALYSIS
(pp. 29-33)

Abstract. The paper has a deal with a problem of creation the public transport networks based on the big geospatial data analysis. The decision support problem for improving public transportation is considered from the standpoint of satisfying transport demand. The proposed method allows creating public transportation routes schemes based on data about the users preferences of moving in the urban infrastructure. The method implements the following steps: the clustering of source and destination transportation correspondence points, the initial route network generating, the route network improving using the evolutionary algorithm implementation. To collect user preferences data, the application Gathering was developed by authors. This solution provides an interface for input data about the most frequent movements in an urban environment. The application Scatter was developed to generate modeling data for further experiments. To reduce the number of initial source/destination points, the approach based on clustering was proposed. The main advantage, the new approach use urban terrain metric to take into consideration natural or artificial obstacles. Also, the algorithm for initial route creation was developed. The main idea of the algorithm is sequentially adding new nodes towards minimization of the total length of the route. The evolutionary modification of the initial routes network is performed by the other algorithm, which uses mutation and crossover operations to optimize the route network length. The obtained algorithm are implemented as a software and are tested using a large amount of modeled geospatial data. For example, 12 000 points of simulated data for the 300 000 population city were processed and grouped into cluster 41. Clusters centers might be considered as stopping points, which included in network routes. Initially, the network was built with an average route length of 7444 m and a total network length of 37 222 m. As the result of the evolutionary algorithm, the obtained network has the average route's length 3125 m and the total network length is 15 627 m.

Keywords: Urban public transportation; Transportation network planning; Decision support; Big data analytics; Population preferences; Transportation correspondence; Geoinformation system.

Рус

М. В. Щербаков, Н. П. Садовникова, Д. С. Парыгин, А. В. Голубев, И. А. Чечеткин (Волгоградский государственный технический университет, Волгоград, Россия) E-mail: Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript  

Eng

M. V. Shcherbakov, N. P. Sadovnikova, D. S. Parygin, A. V. Golubev, I. A. Chechetkin (Volgograd State Technical University, Volgograd, Russia) E-mail: Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript  

Рус

1. Evaluating the Sustainability of Volgograd / N. P. Sadovnikova [et al.] // The Sustainable City VIII: Proc. of the Intern. Conf. on Urban Regeneration and Sustainability, Putrajaya, Malaysia, 3 – 5 Dec. 2013. WIT Press, 2013. P. 279 – 290.
2. Models and Methods for the Urban Transit System Research / N. P. Sadovnikova [et al.] // CIT&DS’2015: Proc. of the Intern. Conf. on Creativity in Intelligent Technologies & Data Science, Volgograd, Russia, 15 – 17 Sept. 2015. Springer IPS, 2015. P. 488 – 499.
3. Нестерова А. Новая маршрутная сеть г. Томска представлена общественности [Электронный ресурс] // Центр дорожной информации: сетевое издание. 2015. URL: http://road. perm.ru/index.php?id=1475 (дата обращения: 01.12.2015).
4. Transport Strategy and Transport Modelling with PTV Visum [Электронный ресурс] // PTV Group. 2014. URL: http:// vision-traffic.ptvgroup.com/en-uk/products/ptv-visum/ (дата обращения: 16.11.2014).
5. Emme [Электронный ресурс] // INRO: офиц. сайт. 2014. URL: https://www.inrosoftware.com/en/products/emme/ (дата обращения: 20.06.2016).
6. Cube. Transportation & Land-Use Modeling [Электронный ресурс] // Citilabs. 2014. URL: http://www.citilabs.com/ software/cube/ (дата обращения: 20.06.2016).
7. Ceder A. Designing Public Transport Network and Routes (Chapter 3) // Advanced Modeling for Transit Operations and Service Planning / W. Lam and M. Bell (Eds.). Pergamon Imprint, Elsevier Science Ltd Pub., 2003. P. 59 – 91.
8. Mobile Phone Data for Development [Электронный ресурс] // NetMob. 2013. URL: http://perso.uclouvain.be/vincent. blondel/netmob/2013/D4D-book.pdf (дата обращения: 20.06.2016).
9. Яновский Т. А., Щербаков М. В. Методика предварительного анализа данных в автоматизированных системах прогнозирования потребления электроэнергии // Вестник компьютерных и информационных технологий. 2012. № 3. С. 21 – 26.
10. Strategway: Web Solutions for Building Public Transportation Routes Using Big Geodata Analysis / A. V. Golubev [et al.] // Proc. of the 17th Intern. Conf. on Information Integration and Web-Based Application & Services, Brussels, Belgium, 11 – 13 Dec. 2015. New York, 2015. P. 665 – 668.
11. Scatter: программное обеспечение [Электронный ресурс]. URL: http://vstu-cad-stuff.github.io/scatter/ (дата обращения: 21.10.2015).
12. Arthur D., Vassilvitskii S. k-means++: The Advantages of Careful Seeding // Proc. of the Eighteenth Annual ACMSIAM Symposium on Discrete Algorithms. 2007. V. 1, № 7. P. 1027 – 1035.
13. Comaniciu D., Meer P. Mean Shift: A Robust Approach Toward Feature Space Analysis // IEEE Transactions on Pattern Analysis and Machine Intelligence. 2002. V. 24, № 5. P. 603 – 619. doi: 10.1109/34.1000236
14. Open Source Routing Machine [Электронный ресурс]. 2015. URL: http://project-osrm.org/ (дата обращения: 20.06.2016).
15. Гладков Л. А., Курейчик В. В., Курейчик В. М. Генетические алгоритмы. М.: ФИЗМАТЛИТ, 2006. 320 с.

Eng

1. Sadovnikova N. P. et al. (2013). Evaluating the sustainability of Volgograd. The Sustainable City VIII: Proc. of the Intern. Conf. on Urban Regeneration and Sustainability, Putrajaya, Malaysia, 3 – 5 Dec. 2013. WIT Press, pp. 279-290.
2. Sadovnikova N. P. et al. (2015). Models and methods for the urban transit system research. CIT&DS’2015: Proc. of the Intern. Conf. on Creativity in Intelligent Technologies & Data Science, Volgograd, Russia, 15 – 17 Sept. 2015. Springer IPS, pp. 488-499.
3. Nesterova A. (2015). The new route network of the Tomsk city was presented to the public. Tsentr dorozhnoi informatsii. Available at: http://road.perm.ru/index.php?id=1475 (Accessed: 01.12.2015). [in Russian language]
4. Transport Strategy and Transport Modelling with PTV Visum. (2014). PTV Group. Available ta: http:// vision-traffic.ptvgroup.com/en-uk/products/ptv-visum/ (Accessed: 16.11.2014).
5. Emme. INRO: official site. (2014). Available at: https://www.inrosoftware.com/en/products/emme/ (Accessed: 20.06.2016).
6. Cube. Transportation & Land-Use Modeling. (2014). Citilabs. Available at: http://www.citilabs.com/ software/cube/ (Accessed: 20.06.2016).
7. Lam W., Bell M. (Eds.), Ceder A. (2003). Designing public transport network and routes (Chapter 3). Advanced Modeling for Transit Operations and Service Planning. Pergamon Imprint, Elsevier Science Ltd Pub., pp. 59-91.
8. Mobile phone data for development. (2013). NetMob. Available at: http://perso.uclouvain.be/vincent.blondel/netmob/ 2013/D4D-book.pdf (Accessed: 20.06.2016).
9. Ianovskii T. A., Shcherbakov M. V. (2012). Methodology of a preliminary analysis of the data in automated systems for energy consumption forecasting. Vestnik komp'iuternykh i informatsionnykh tekhnologii, (3), pp. 21-26. [in Russian language]
10. Golubev A. V. et al. (2015). Strategway: web solutions for building public transportation routes using big geodata analysis. Proc. of the 17th Intern. Conf. on Information Integration and Web-Based Application & Services, Brussels, Belgium, 11 – 13 Dec. 2015. New York, pp. 665-668.
11. Scatter: software. Available at: http://vstu-cad-stuff.github.io/scatter/ (Accessed: 21.10.2015).
12. Arthur D., Vassilvitskii S. (2007). K-means++: The Advantages of Careful Seeding. Proc. of the Eighteenth Annual ACMSIAM Symposium on Discrete Algorithms, Vol. 1, (7), pp. 1027- 1035.
13. Comaniciu D., Meer P. (2002). Mean shift: a robust approach toward feature space analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(5), pp. 603-619. doi: 10.1109/34.1000236
14. Open source routing machine. (2015). Available at: http://project-osrm.org/ (Accessed: 20.06.2016).
15. Gladkov L. A., Kureichik V. V., Kureichik V. M. (2006). Genetic algorithms. Moscow: FIZMATLIT. [in Russian language]

Рус

Статью можно приобрести в электронном виде (PDF формат).

Стоимость статьи 350 руб. (в том числе НДС 18%). После оформления заказа, в течение нескольких дней, на указанный вами e-mail придут счет и квитанция для оплаты в банке.

После поступления денег на счет издательства, вам будет выслан электронный вариант статьи.

Для заказа статьи заполните форму:

{jform=1,doi=10.14489/vkit.2016.08.pp.029-033}

.

Eng

This article  is available in electronic format (PDF).

The cost of a single article is 350 rubles. (including VAT 18%). After you place an order within a few days, you will receive following documents to your specified e-mail: account on payment and receipt to pay in the bank.

After depositing your payment on our bank account we send you file of the article by e-mail.

To order articles please fill out the form below:

{jform=2,doi=10.14489/vkit.2016.08.pp.029-033}

 

 

 

 

 

.

.

 

 

 
Search
Rambler's Top100 Яндекс цитирования