| Русский Русский | English English |
   
Главная Archive
22 | 12 | 2024
10.14489/vkit.2015.03.pp.003-008

DOI: 10.14489/vkit.2015.03.pp.003-008

Лаврова Г. А.
ОЦЕНКА ХАРАКТЕРИСТИК ТЕХНОЛОГИИ 3D-АУДИО, РЕАЛИЗОВАННОЙ С УЧЕТОМ ПОВОРОТА ГОЛОВЫ ИСПЫТУЕМОГО
(с. 3-8)

Аннотация. Рассмотрена одна из возможностей улучшения интерфейса кабины самолета – применение технологии пространственного звука (3D-аудио). Технология реализуется путем подачи в наушники пилота обработанных звуковых сигналов. Используются методы цифровой фильтрации: перекрытия с суммированием и алгоритм вычисления свертки на основе быстрого преобразования Фурье. В качестве импульсных характеристик взяты данные из общедоступной библиотеки CIPIC HRTF Database. Предложено использовать микромеханическую бесплатформенную инерциальную навигационную систему для корректного задания положения виртуального источника звука. Представлены результаты экспериментов, проведенных с использованием программного обеспечения MATLAB и VisualStudio, по оценке характеристик точности локализации направления звука при модулировании широкополосного шума.

Ключевые слова: пространственные аудиоподсказки; антропозависимая передаточная функция; антропо-зависимая импульсная характеристика; звуковой интерфейс.

 

Lavrova G. А.
ESTIMATION OF CHARACTERISTICS OF 3D-AUDIO TECHNOLOGY, WHICH WAS REALIZED, TAKING INTO CONSIDERATION LISTENER’S POSITION OF THE HEAD
(pp. 3-8)

Abstract. The paper is dedicated to realization of 3D-audio technology through headphones and its further implementation in the cockpit. Spatial audio-cues, which can be generated by using this technology, will improve the audio interface of the aircraft’s cabin. To realize the technology it is necessary to provide processed audio signals to supplying pilot’s headphones. For sound signal’s processing finite impulse response filtering FFT-based overlap-add method is used. Impulse characteristics are taken from the public data library CIPIC HRTF Database. Tracking position of the listener's head is a necessary condition for valid implementation of the technology – to set correctly the position of the virtual sound source. For these purposes micromechanical inertial system device is proposed to use. By means of MATLAB and Visual Studio the software was created. It performs the necessary algorithms for audio processing and tracking the relative position of the listener's head and the virtual sound source. Using the software and micromechanical inertial system device an experiment was carried out. Modulated wideband noise was used as sound signal. Experimental group consisted of 7 operators with no obvious hearing defects. The main purpose of the experiment was to estimate accuracy characteristics, typical for listener’s capability to determine the direction of the virtual sound source. During the experiment processed audio signals was provided to subject’s headphones. Operator turned his head to “look” at virtual sound source as he heard it’s location. In that moment information about his head position was determined by information from the sensor. Difference between established and determined angle position was fixed as deviation (error) separately for horizontal (azimuth angle) and vertical (elevation angle) directions. The mean of azimuth angle’s deviation absolute value was 7.3 degrees. Similarly the mean for elevation angle was 26 degrees. These mean estimates were calculated for all the operators and positions in the experiment. The article also compares the results mentioned above with earlier experiment, which was carried out without head position sensor. In that case listener’s head position was fixed, and listener just expressed verbally his suggestions about angular position of virtual sound source. Though these experiments were carried out with different conditions, their results were approximately compared. Conclusion of this comparison is that accuracy characteristics of 3D-audio technology, which was realized with tracking listener’s head position, are approximately two times better.

Keywords: Spatial audio-point; Head related transfer function; Head related impulse response; Sound interface.

Рус

Г. А. Лаврова (ФГУП «Государственный научно-исследовательский институт авиационных систем» ГНЦ РФ, Москва) E-mail: Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript  

Eng

G. А. Lavrova (State Research Institute of Aviation Systems State Scientific Center of Russian Federation, Moscow) E-mail: Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript  

Рус

1. Альтман Я. А. Слуховая система Л.: Наука, 1990. 620 с.
2. Корсун О. Н., Лаврова Г. А. Синтез простран-ственных аудиоподсказок для звукового интерфейса перспективной кабины летательного аппарата // Седь-мой Международный Аэрокосмический Конгресс IAC’2012: сб. научн. тр. М., 2013. 1 электрон. опт. диск (CD-ROM) рег. № 0321303652/03.06.2013. С. 407 – 410.
3. The CIPIC HRTF Database / V. R. Algazi, R.O. Duda, D. M. Thompson, C. Avendano // Proc. of IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA’01). New York, 2001. P. 99 – 102.
4. Рабинер Л., Гоулд Б. Теория и применение цифровой обработки сигналов / Пер. с англ. М.: Мир, 1978. 840 с.
5. fftfilt: FFT-Based FIR Filtering Using Overlap-Add Method. URL: http://www.mathworks.com/help/signal/ref/ fftfilt.html (дата обращения 20.12.2014).
6. MTi User Manual: MTi 10-Series and MTi 100-Series (Document MT0605P, Revision E, 17 January 2014). URL: http://www.xsens.com/download/usermanual/MTi_usermanual.pdf ( дата обращения: 20.12.2014).
7. Корсун О. Н., Лаврова Г. А. Современные ме-тоды реализации технологии 3D-аудио и оценка ее воз-можностей для улучшения звукового интерфейса кабины летательного аппарата // Электрон. науч.-техн. издание. Наука и образование. 2014. № 2. URL: http://technomag. bmstu.ru/doc/699177.html (дата обращения: 20.12.2014). DOI: 10.7463/0214.0699177.

Eng

1. Al'tman Ia. A. (1990). The auditory system. Lenin-grad: Nauka.
2. Korsun O. N., Lavrova G. A. (2013). Synthesis of spatial audio prompts for audio interface of promising cabin of the aircraft. Seventh international aerospace Congress IAC’2012. Collection of scientific papers. Moscow. 2013, pp. 407-410.
3. Algazi V. R., R. Duda O., Thompson D. M., Avendano C. (2001). The CIPIC HRTF database. Proc. IEEE Workshop on Applications of Signal Processing to Audio and Acoustics. New York, pp. 99-102.
4. Rabiner L., Gould B. (1978). Theory and applica-tion of digital signal processing. Moscow: Mir.
5. Fftfilt: FFT-based FIR Filtering using Overlap-add method. Available at: http://www.mathworks.com/help/signal/ ref/ fftfilt.html/ (Accessed: 20.12.2013).
6. MTi User Manual: MTi 10-series and MTi 100-series (2013). Document MT0605P, Revision D, 28 October 2013. Available at: http://www.xsens.com/manual-download-mti-100-series/
7. Korsun O. N., Lavrova G. A. (2014). Modern methods of implementing 3D technology-audio and assessment of its opportunities to improve the audio interface of the cabin of the aircraft. Elektronnoe nauchno-tekhnicheskoe izdanie «Nauka i obrazovanie», (3).

Рус

Статью можно приобрести в электронном виде (PDF формат).

Стоимость статьи 250 руб. (в том числе НДС 18%). После оформления заказа, в течение нескольких дней, на указанный вами e-mail придут счет и квитанция для оплаты в банке.

После поступления денег на счет издательства, вам будет выслан электронный вариант статьи.

Для заказа статьи заполните форму:

{jform=1,doi=10.14489/vkit.2015.03.pp.003-008}

.

Eng

This article  is available in electronic format (PDF).

The cost of a single article is 250 rubles. (including VAT 18%). After you place an order within a few days, you will receive following documents to your specified e-mail: account on payment and receipt to pay in the bank.

After depositing your payment on our bank account we send you file of the article by e-mail.

To order articles please fill out the form below:

{jform=2,doi=10.14489/vkit.2015.03.pp.003-008}

 

 

 

 

 

.

.

 

 
Search
Rambler's Top100 Яндекс цитирования