10.14489/vkit.2024.09.pp.026-031 |
DOI: 10.14489/vkit.2024.09.pp.026-031 Морозов С. М. Аннотация. Рассмотрен метод повышения точности нейро-нечеткой аппроксимации, основанный на самоорганизации системы. Самоорганизация нейро-нечетких систем используется для ускорения обучения системы, однако на практике точность их работы ниже, чем у систем без самоорганизации. Предложен метод самоорганизации нейро-нечеткой системы, основанный на автоматическом построении дефаззификатора и поиске нечетких множеств, использование которых обеспечит высокую точность аппроксимации. Проведен вычислительный эксперимент в целях оценки уменьшения погрешности аппроксимации сложной математической зависимости с помощью предложенного метода. Установлено, что предложенный метод самоорганизации автоматически формирует систему нейро-нечеткой аппроксимации, точность которой выше, чем у существующих аналогов. Ключевые слова: нейро-нечеткие вычисления; TSK-системы; нечеткие множества; нейро-нечеткая аппроксимация; функции принадлежности; дефаззификация.
Morozov S. M. Abstract. Neuro-fuzzy approximation precision increasing, based on systems’ self-organisation, is considered. Neuro-fuzzy systems’ self-organisation is primarily used to reduce systems’ training time, but their precision is less, than precision of systems without self-organisation. Root mean square error (RMSE) and maximal error are used as precision metrics. Method of neuro fyzzy systems’ self-organisation, which is based on defuzzifier automatic construction and fuzzy sets search, which provide high approximation precision, is suggested. Given method uses algorithms of detecting the most fitting borders of fuzzy sets and type of formed equations in order to produce the neuro-fuzzy approximation system with the best precision for a given dataset. Since fuzzy sets and defuzzufier configuration both influence systems’ precision, interaction of these parts of neuro-fuzzy system during training for saving training time is described. The computing experiment, aimed at estimating the complex mathematical function approximation precision reduction by implementing presented method was carried out. Using proposed method can be used for neuro-fuzzy approximation precision increase. Both fuzzy sets search and fitting output function selection reduce approximation error, but combining these approaches produces higher precision. Presented method provided lowering of both RMSE and maximal error. Size reduction can be achieved by implementing presented method since in can reduce number of required neurons. Keywords: Neuro-fuzzy computing; TSK-systems; Fuzzy sets; Neuro-fuzzy approximation; Membership functions; Defuzzification.
РусС. М. Морозов (Санкт-Петербургский государственный электротехнический университет «ЛЭТИ» имени В. И. Ульянова (Ленина), Санкт-Петербург, Россия) E-mail: Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript EngS. M. Morozov (Saint Petersburg Electrotechnical University “LETI”, Saint Petersburg, Russia) E-mail: Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript
Рус1. Denna M., Mauri G., Zanaboni A. M. Learning Fuzzy Rules with Tabu Searchan Application to Control // IEEE Transactions on Fuzzy Systems. 1999. V. 7, No. 3. P. 295 – 318. DOI: 10.1109/91.771086 Eng1. Denna M., Mauri G., Zanaboni A. M. (1999). Learning Fuzzy Rules with Tabu Searchan Application to Control. IEEE Transactions on Fuzzy Systems, 7(3), 295 – 318. DOI: 10.1109/91.771086
РусСтатью можно приобрести в электронном виде (PDF формат). Стоимость статьи 500 руб. (в том числе НДС 20%). После оформления заказа, в течение нескольких дней, на указанный вами e-mail придут счет и квитанция для оплаты в банке. После поступления денег на счет издательства, вам будет выслан электронный вариант статьи. Для заказа скопируйте doi статьи: 10.14489/vkit.2024.09.pp.026-031 Отправляя форму вы даете согласие на обработку персональных данных. .
EngThis article is available in electronic format (PDF). The cost of a single article is 500 rubles. (including VAT 20%). After you place an order within a few days, you will receive following documents to your specified e-mail: account on payment and receipt to pay in the bank. After depositing your payment on our bank account we send you file of the article by e-mail. To order articles please copy the article doi: 10.14489/vkit.2024.09.pp.026-031 and fill out the
.
|