10.14489/vkit.2021.06.pp.029-038 |
DOI: 10.14489/vkit.2021.06.pp.029-038 Конопацкий Е. В., Селезнёв И. В., Лагунова М. В., Бездитный А. А. Аннотация. Рассмотрено развитие геометрической теории многомерной интерполяции. Установлено, что геометрическим моделям многофакторных процессов, полученным с помощью многомерной интерполяции, свойственна вариативность, которая является следствием множественности выбора опорных линий в процессе разработки геометрической схемы моделирования. При этом все возможные вариации геометрических интерполянтов полностью удовлетворяют исходным экспериментально-статистическим данным, но имеют различную кривизну между узловыми точками интерполяции. С увеличением размерности пространства число вариаций в значительной степени увеличивается. Вариативный подход к геометрическому моделированию многофакторных процессов порождает ряд научных задач, требующих проведения дальнейших исследований, таких как сравнение геометрических объектов многомерного пространства, разработка критериев выбора наилучших решений, построение усредненных геометрических объектов как одного из инструментов оптимизации результатов моделирования и т.д. Приведены результаты вычислительного эксперимента по геометрическому моделированию зависимости физикомеханических свойств мелкозернистого бетона от состава комбинированного заполнителя на основе вариативных точечных алгоритмов с последующим построением усредненной поверхности отклика, текущая точка которой представляет собой центр тяжести многомерного тетраэдра, для которого размерность пространства зависит от числа возможных вариантов интерполяции. Ключевые слова: геометрическое моделирование; многофакторный процесс; многомерная интерполяция; поверхность отклика; точечное исчисление; вариативные точечные алгоритмы.
Konopatskiy E. V., Seleznev I. V., Lagunova M. V., Bezditnyi A. A. Abstract. In this paper, the geometric theory of multidimensional interpolation was further developed. It has been established that the geometric models of multivariate processes obtained using multidimensional interpolation are characterized by variability, which is a consequence of the multiplicity of choice of reference lines in the process of developing a geometric modeling scheme. At the same time, all possible variations of geometric interpolants fully satisfy the initial experimental and statistical data, but have different curvature between the node points of the interpolation. As the dimension of the space increases, the number of variations increases significantly. The variable approach to geometric modeling of multifactorial processes generates a number of scientific problems that require further research, such as: comparison of geometric objects of multidimensional space, development of criteria for choosing the best solutions, construction of averaged geometric objects as one of the tools for optimizing the results of modeling, etc. The article also presents the results of a computational experiment on geometric modeling of the dependence of the physical and mechanical properties of fine-grained concrete on the composition of the combined aggregate based on variable point algorithms with the subsequent construction of an averaged response surface, the current point of which is the center of gravity of a multidimensional tetrahedron, for which the dimension of space depends on the amount possible interpolation options. Keywords: Geometric modeling; Multivariate process; Multidimensional interpolation; Response surface; Point calculus; Variable point algorithms.
РусЕ. В. Конопацкий, И. В. Селезнёв (Донбасская национальная академия строительства и архитектуры, Макеевка, Украина) E-mail:
Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript
EngE. V. Konopatskiy, I. V. Seleznev (Donbas National Academy of Civil Engineering and Architecture, Makeevka, Ukraine) E-mail:
Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript
Рус1. Конопацкий Е. В. Геометрическая теория многомерной интерполяции // Автоматизация и моделирование в проектировании и управлении. 2020. № 1(07). С. 9 – 16. Eng1. Konopatskiy E. V. (2020). Geometric theory of multivariate interpolation. Avtomatizatsiya i modelirovanie v proektirovanii i upravlenii, 1(07), pp. 9 – 16. [in Russian language]
РусСтатью можно приобрести в электронном виде (PDF формат). Стоимость статьи 450 руб. (в том числе НДС 18%). После оформления заказа, в течение нескольких дней, на указанный вами e-mail придут счет и квитанция для оплаты в банке. После поступления денег на счет издательства, вам будет выслан электронный вариант статьи. Для заказа скопируйте doi статьи: 10.14489/vkit.2021.06.pp.029-038 Отправляя форму вы даете согласие на обработку персональных данных. .
EngThis article is available in electronic format (PDF). The cost of a single article is 450 rubles. (including VAT 18%). After you place an order within a few days, you will receive following documents to your specified e-mail: account on payment and receipt to pay in the bank. After depositing your payment on our bank account we send you file of the article by e-mail. To order articles please copy the article doi: 10.14489/vkit.2021.06.pp.029-038 and fill out the
.
|